精英家教网 > 高中数学 > 题目详情
8.已知双曲线C:$\frac{{x}^{2}}{{a}^{2}}-\frac{{y}^{2}}{{b}^{2}}=1$(a>0,b>0)的左、右焦点分别为F1、F2,点M是双曲线右支上一点,且MF1⊥MF2,延长MF2交双曲线C于点P,若|MF1|=|PF2|,则双曲线C的离心率为(  )
A.$\sqrt{3}$B.2C.$\frac{\sqrt{10}}{2}$D.$\sqrt{6}$

分析 设|MF1|=t,由双曲线的定义可得|MF2|=t-2a,|PF2|=t,|PF1|=t+2a,再由勾股定理,求得t=3a,及a,c的关系,运用离心率公式即可得到所求.

解答 解:设|MF1|=t,由双曲线的定义可得|MF2|=t-2a,
|PF2|=t,|PF1|=t+2a,
由MF1⊥MF2,可得|MF1|2+|MP|2=|PF1|2
即t2+(2t-2a)2=(t+2a)2
解得t=3a,
又|MF1|2+|MF2|2=|F2F1|2
即为(3a)2+a2=4c2
即为c=$\frac{\sqrt{10}}{2}$a,
则e=$\frac{c}{a}$=$\frac{\sqrt{10}}{2}$.
故选:C.

点评 本题考查双曲线的定义、方程和性质,主要考查离心率的求法,注意两次运用勾股定理,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

18.(1)已知椭圆中心在原点,焦点在坐标轴上,长轴长为短轴长的2倍,且过点P(4,2),求此椭圆的方程;
(2)求与双曲线$\frac{{x}^{2}}{5}-\frac{{y}^{2}}{3}$=1有公共渐近线,且焦距为8的双曲线的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

19.如图所示,设F1、F2是椭圆$\frac{x^2}{a^2}+\frac{y^2}{b^2}$=1(a>b>0)的左、右焦点,A、B分别为其左顶点与上顶点,椭圆的离心率e=$\frac{1}{2}$,原点到过点A、B的直线的距离为$\frac{{2\sqrt{21}}}{7}$.
(1)求椭圆的方程;
(2)过右焦点F2的直线l交椭圆于M、N两点,直线AM、AN分别与直线x=4交于点P和Q,试探究以线段PQ为直径的圆与右焦点F2的位置关系.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

16.设关于x的方程x2-2ax+a2-2a-3=0,试分别探究满足下列条件的实数a的取值范围.
(1)方程有实根;
(2)方程有两正根;
(3)方程有一正一负根;
(4)两根均大于0且小于1.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.已知圆M:(x+1)2+y2=1,圆N:(x-1)2+y2=9,动圆P与圆M外切并且与圆N内切,圆心P的轨迹为曲线C.
(1)求C的方程:
(2)l是与圆P,圆M都相切的-条直线,l与曲线C交于A,B两点,当圆P的半径最长时,求|AB|.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

13.已知f(x)=$\left\{\begin{array}{l}{1-x-2{x}^{2}}&{x≤0}\\{|lgx|}&{x>0}\end{array}\right.$若关于x的方程f(x)=a有四个实根x1,x2,x3,x4,则这四根之积x1,x2,x3,x4的取值范围是(  )
A.[0,$\frac{1}{2}$)B.[0,$\frac{1}{4}$)C.[0,$\frac{1}{8}$)D.[0,$\frac{1}{16}$)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

20.设f(x)=x2+px+q,A={x|f(x)=x}={p},求p、q的值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

17.如图所示是一位同学画的一个实物的三视图,老师判断正视图是正确的,其他两个视图有错误,则正确的侧视图和俯视图是(  )
A.B.
C.D.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

19.已知定义域为R的函数f(x)=$\frac{a-{2}^{x}}{b+{2}^{x}}$是奇函数.
(1)求a,b的值;
(2)证明函数f(x)在(-∞,+∞)上是减函数;
(3)若对任意的t∈R,不等式:f(t2-2t)+f(2t2-k)<0恒成立,求k的取值范围.

查看答案和解析>>

同步练习册答案