精英家教网 > 高中数学 > 题目详情
14.若函数f(x)=ax-b(a>0,且a≠1,b∈R)的定义域和值域都是[-1,1],求函数f(x)的解析式.

分析 对a进行分类讨论,分别题意和指数函数的单调性列出方程组,解得答案.

解答 解:当a>1时,函数f(x)=ax-b在定义域上是增函数,
所以$\left\{\begin{array}{l}a-b=1\\ \frac{1}{a}-b=-1\end{array}\right.$,
解得b=$\sqrt{2}$,a=1+$\sqrt{2}$;
当0<a<1时,函数f(x)=ax-b在定义域上是减函数,
所以$\left\{\begin{array}{l}a-b=-1\\ \frac{1}{a}-b=1\end{array}\right.$,
解得b=$\sqrt{2}$,a=-1+$\sqrt{2}$,
故$f(x)=(1+\sqrt{2})^{x}-\sqrt{2}$,或$f(x)={(-1+\sqrt{2})}^{x}-\sqrt{2}$

点评 本题考查指数函数的单调性的应用,以及分类讨论思想,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

4.a≠0,则y=ax2的焦点坐标和准线方程分别为(  )
A.$(\frac{a}{4},0)$   x=-$\frac{a}{4}$B.$(0,\frac{a}{4})$  y=-$\frac{a}{4}$C.$(\frac{1}{4a},0)$  x=-$\frac{1}{4a}$D.$(0,\frac{1}{4a})$  y=-$\frac{1}{4a}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

5.若函数f(x)=x3-$\frac{3}{2}$ax2+a在R上存在三个零点,则实数a的取值范围是(  )
A.a>$\sqrt{2}$B.a>$\sqrt{2}$或a<-$\sqrt{2}$C.a<-$\sqrt{2}$D.a<-1

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.已知直线x-y-1=0与椭圆(n-1)x2+ny2-n(n-1)=0(n>0)交于A、B两点,若以AB为直径的圆过椭圆的左焦点F,求实数的n值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.已知函数f(x)=2lnx+$\frac{ax}{x+1}$,其中a为实常数.
(1)若f(x)在(0,+∞)上是增函数,求a的取值范围;
(2)若f(x)有两个不同的极值x1,x2,当x>0时,证明:$\frac{f({x}_{1})+f({x}_{2})}{x+1}$≥$\frac{f(x)-2x+2}{x}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

19.F1,F2是椭圆C:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1(a>b>0)的两个焦点,直线l:y=2x+5与椭圆C交于P1,P2,已知椭圆中心O关于直线l的对称点恰好落在椭圆C的左准线上,且|P2F2|-|P1F1|=$\frac{10}{9}$a,则椭圆C的方程为$\frac{{x}^{2}}{8}+\frac{{y}^{2}}{4}=1$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

6.函数y=2x-$\frac{1}{{x}^{2}}$的极大值是-3,极大值点是x=-1.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.在正方体ABCD-A1B1C1D1中,E,F分别是AA1,A1D1的中点,求:
(1)D1B与平面ABCD所成角的余弦值;
(2)EF与平面A1B1C1D1所成的角.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.已知f(x)=x2-2x-3,等差数列{an}中,a1=f(x-1),a${\;}_{2}=-\frac{3}{2}$,a3=f(x)
求:(1)x的值;
(2)通项an

查看答案和解析>>

同步练习册答案