精英家教网 > 高中数学 > 题目详情
8.已知双曲线的一条渐近线方程是y=$\sqrt{3}$x,它的一个焦点在抛物线y2=8x的准线上,则该双曲线的标准方程为x2-$\frac{{y}^{2}}{3}$=1.

分析 求出抛物线的准线方程,可得c=2,设双曲线的方程为$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{{b}^{2}}$=1(a,b>0),求出渐近线方程,由题意可得a,b的方程,解方程可得a,b,进而得到双曲线的方程.

解答 解:抛物线y2=8x的准线为x=-2,
由题意可得c=2,
设双曲线的方程为$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{{b}^{2}}$=1(a,b>0),
渐近线方程为y=±$\frac{b}{a}$x,
由题意可得a2+b2=4,b=$\sqrt{3}$a,
解得a=1,b=$\sqrt{3}$,
即有双曲线的标准方程为x2-$\frac{{y}^{2}}{3}$=1.
故答案为:x2-$\frac{{y}^{2}}{3}$=1.

点评 本题考查双曲线的方程的求法,注意运用抛物线的准线方程和渐近线方程,考查运算能力,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

1.若数列{an}满足a1=1,a2=$\frac{2}{3}$,2an-1an+1=anan+1+an-1an(n≥2),则an=(  )
A.$\frac{2}{n+1}$B.$\frac{2}{n+2}$C.($\frac{2}{3}$)nD.($\frac{2}{3}$)n-1

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

19.如图,已知四棱锥P-ABCD的底面是菱形,PA⊥平面ABCD,∠ABC=60°,E,F,H分别是BC,PC,PD的中点.
(Ⅰ)证明:AE⊥PD;
(Ⅱ)设平面PAB∩平面PCD=l,求证:FH∥l;
(Ⅲ)若AB=1,且AF=$\frac{\sqrt{2}}{2}$,求多面体AEFH的体积.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

16.如图,在三棱柱ABC-A1B1C1中,AB=AC,且侧面BB1C1C是菱形,∠B1BC=60°.
(Ⅰ)求证:AB1⊥BC;
(Ⅱ)若AB⊥AC,AB1=BB1,且该三棱柱的体积为2$\sqrt{6}$,求AB的长.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.已知双曲线M:$\frac{{x}^{2}}{4}$-$\frac{{y}^{2}}{5}$=1与椭圆N:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1(a>b>0)共焦点,且椭圆N过点(2$\sqrt{2}$,1)
(1)求椭圆N的长轴长与短轴长
(2)设椭圆N与双曲线M在第一象限的交点为A,公共的左焦点为F,求|AF|的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.如图,已知多面体A-BCDEF中,ABCD为菱形,∠ABC=60°,AE⊥平面ABCD,AE∥CF,AB=AE=1,AF⊥BE.
(I)求证:AF⊥平面BDE;
(Ⅱ)求多面体ABCDEF的体积.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

20.已知数列{an}的前n项和为Sn,Sn=2an-3n,(n∈N+
(1)求a1,a2
(2)求证:数列{an+3}成等比数列;
(3)求数列{an}的通项公式an
(4)数列{an}中是否存在三项,它们可以构成等差数列?若存在,请求出一组适合条件的项;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

17.已知集合A={x|x2-5x-6<0},集合B={x|6x2-5x+1≥0},集合C={x|(x-m)(m+9-x)>0}
(1)求A∩B
(2)若A∪C=C,求实数m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

18.已知函数y=sinx+cosx,y=2$\sqrt{2}$sinxcosx,则下列结论中,正确的序号是③⑤
①两函数的图象均关于点(-$\frac{π}{4}$,0)成中心对称;  
②两函数的图象均关于直线x=-$\frac{π}{4}$成轴对称;
③两函数在区间(-$\frac{π}{4}$,$\frac{π}{4}$)上都是单调增函数; 
 ④两函数的最小正周期相同; 
 ⑤两函数的最大值相同.

查看答案和解析>>

同步练习册答案