分析 分别解出A,B,C,(1)利用集合运算性质可得A∩B;
(2)由A∪C=C,可得A⊆C.即可得出.
解答 解:由合A={x|x2-5x-6<0},集合B={x|6x2-5x+1≥0},集合C={x|(x-m)(m+9-x)>0}.
∴A={x|-1<x<6},$B=\left\{{x\left|{x≥\frac{1}{2}或x≤\frac{1}{3}}\right.}\right\}$,C={x|m<x<m+9}.
(1)$A∩B=\left\{{x\left|{-1<x≤\frac{1}{3}或\frac{1}{2}≤x<6}\right.}\right\}$,
(2)由A∪C=C,可得A⊆C.
即$\left\{{\begin{array}{l}{m+9≥6}\\{m≤-1}\end{array}}\right.$,解得-3≤m≤-1.
点评 本题考查了不等式的解法、集合运算性质,考查了推理能力与计算能力,属于中档题.
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | $\frac{2}{3}\sqrt{3}$ | B. | $\frac{4}{3}\sqrt{2}$ | C. | $\frac{4}{3}\sqrt{6}$ | D. | $\frac{2}{3}\sqrt{6}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | $\frac{3}{8}$ | B. | 2 | C. | 6 | D. | $\frac{2}{3}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com