精英家教网 > 高中数学 > 题目详情
12.如图,四棱锥P-ABCD中,侧面PDC是正三角形,底面ABCD是边长为$2\sqrt{3}$的菱形,∠DAB=120°,且侧面PDC与底面垂直,M为PB的中点.
(1)求证:PA⊥CD;
(2)求三棱锥A-CDM的体积.

分析 (1)由已知结合面与面垂直的性质可得CD⊥平面APO,再由线面垂直的定义得到PA⊥CD;
(2)由题意求得P到底面的距离,然后把三棱锥A-CDM的体积转化为三棱锥M-ACD的体积求解.

解答 (1)证明:取DC的中点O,连接OP,OA,由△PDC是正三角形,有PO⊥DC
在菱形ABCD中,由于∠ADC=60°,$AD=2\sqrt{3}$,$OD=\sqrt{3}$,有AO⊥CD.
又PO⊥CD,OA∩OP=O,
则CD⊥平面APO,PA?平面APC,
即CD⊥PA;
(2)解:∵PO⊥CD,平面PCD⊥平面ABCD,
∴PO⊥底面ABCD,
∵PDC是正三角形,且PD=$2\sqrt{3}$,∴PO=$\sqrt{(2\sqrt{3})^{2}-(\sqrt{3})^{2}}=3$.
∵M是PB的中点,∴M到底面ABCD的距离$h=\frac{1}{2}PO=\frac{3}{2}$,
${V_{A-CDM}}={V_{M-ACD}}=\frac{1}{3}•{S_{△ACD}}•h=\frac{1}{3}×\frac{{\sqrt{3}}}{4}{({2\sqrt{3}})^2}×\frac{3}{2}=\frac{{3\sqrt{3}}}{2}$.

点评 本题考查平面与平面垂直的性质,考查了多面体体积的求法,训练了等积法,是中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

2.如图,某人打算做一个正四棱锥形的金字塔模型,先用木料搭边框,再用其他材料填充.已知金字塔的每一条棱和边都相等
(1)求证:直线AC垂直于直线SD.
(2)若搭边框共使用木料24米,则需要多少立方米的填充材料才能将整个金字塔内部填满?

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.已知双曲线M:$\frac{{x}^{2}}{4}$-$\frac{{y}^{2}}{5}$=1与椭圆N:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1(a>b>0)共焦点,且椭圆N过点(2$\sqrt{2}$,1)
(1)求椭圆N的长轴长与短轴长
(2)设椭圆N与双曲线M在第一象限的交点为A,公共的左焦点为F,求|AF|的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

20.已知数列{an}的前n项和为Sn,Sn=2an-3n,(n∈N+
(1)求a1,a2
(2)求证:数列{an+3}成等比数列;
(3)求数列{an}的通项公式an
(4)数列{an}中是否存在三项,它们可以构成等差数列?若存在,请求出一组适合条件的项;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

7.如图,已知三棱柱ABC-A1BlC1中,点D是AB的中点,平面A1DC分此棱柱成两部分,多面体A1ADC与多面体A1B1C1DBC体积的比值为1:5.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

17.已知集合A={x|x2-5x-6<0},集合B={x|6x2-5x+1≥0},集合C={x|(x-m)(m+9-x)>0}
(1)求A∩B
(2)若A∪C=C,求实数m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.如图,在棱长为a(a>0)的正四面体ABCD中,点B1,C1,D1分别在棱AB,AC,AD上,且平面B1C1D1∥平面BCD,A1为△BCD内一点,记三棱锥A1-B1C1D1的体积V,设$\frac{A{D}_{1}}{AD}$=x,对于函数V=f(x),则(  )
A.当x=$\frac{2}{3}$时,函数f(x)取到最大值
B.函数f(x)在($\frac{1}{2}$,1)上是减函数
C.函数f(x)的图象关于直线x=$\frac{1}{2}$对称
D.存在x0,使得f(x0)$>\frac{1}{3}{V}_{A-BCD}$(其中VA-BCD为四面体ABCD的体积)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.数列{an},{bn}满足$\left\{\begin{array}{l}{{a}_{n+1}=\frac{1}{2}{a}_{n}+\frac{1}{2}{b}_{n}}\\{\frac{1}{{b}_{n+1}}=\frac{1}{2}•\frac{1}{{a}_{n}}+\frac{1}{2}•\frac{1}{{b}_{n}}}\end{array}\right.$,a1>0,b1>0;
(1)求证:{an•bn}是常数列;
(2)若{an}是递减数列,求a1与b1的关系;
(3)设a1=4,b1=1,当n≥2时,求an的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

2.设命题p:函数y=-xsinx的图象关于原点对称,
命题q:函数y=-xsinx在区间[0,$\frac{π}{2}$]上单调递减,
则下列命题中正确的是(  )
A.p∧qB.¬p∧qC.p∨(¬q)D.(¬p)∧(¬q)

查看答案和解析>>

同步练习册答案