精英家教网 > 高中数学 > 题目详情
2.设命题p:函数y=-xsinx的图象关于原点对称,
命题q:函数y=-xsinx在区间[0,$\frac{π}{2}$]上单调递减,
则下列命题中正确的是(  )
A.p∧qB.¬p∧qC.p∨(¬q)D.(¬p)∧(¬q)

分析 由于函数y=-xsinx是偶函数,在区间[0,$\frac{π}{2}$]上单调递减即可得出.

解答 解:命题p:函数y=-xsinx是偶函数,其图象关于y轴对称,因此p是假命题.
命题q:函数y=-xsinx在区间[0,$\frac{π}{2}$]上单调递减,是真命题.
∴只有¬p∧q是真命题.
故选:B.

点评 本题考查了函数的单调性奇偶性,考查了推理能力与计算能力,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

12.如图,四棱锥P-ABCD中,侧面PDC是正三角形,底面ABCD是边长为$2\sqrt{3}$的菱形,∠DAB=120°,且侧面PDC与底面垂直,M为PB的中点.
(1)求证:PA⊥CD;
(2)求三棱锥A-CDM的体积.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

13.在平面直角坐标系内,直线l:2x+y-2=0,将l与两坐标轴围成的封闭图形绕y轴旋转一周,所得几何体的体积为$\frac{2}{3}π$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

10.已知$\overrightarrow{a}$=(1,-2),$\overrightarrow{b}$=(2,m),若$\overrightarrow{a}$⊥$\overrightarrow{b}$,则|$\overrightarrow{b}$|=(  )
A.$\sqrt{5}$B.$\sqrt{3}$C.1D.$\frac{1}{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

17.数列{an}满足a1=1,nan+1=(n+1)an+n(n+1),n∈N*,则an=n2

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

7.现有一根n节的竹竿,自上而下每节的长度依次构成等差数列,已知最上面三节的长度之和为36,最下面三节的长度之和为114,整个竹竿的长度为400,则n=16.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

14.若数列$\sqrt{2}$,$\sqrt{5}$,$2\sqrt{2}$,$\sqrt{11}$,$\sqrt{14}$,…,则$4\sqrt{2}$是这个数列的第(  )项.
A.8B.9C.10D.11

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.随着国民生活水平的提高,利用长假旅游的人越来越多.某公司统计了2012到2016年五年间本公司职员每年春节期间外出旅游的家庭数,具体统计数据如表所示:
年份(x)20122013201420152016
家庭数(y)610162226
(Ⅰ)从这5年中随机抽取两年,求外出旅游的家庭数至少有1年多于20个的概率;
(Ⅱ)利用所给数据,求出春节期间外出旅游的家庭数与年份之间的回归直线方程$\hat y=\hat bx+\hat a$,判断它们之间是正相关还是负相关;并根据所求出的直线方程估计该公司2019年春节期间外出旅游的家庭数.
参考公式:$\widehat{b}$=$\frac{\sum_{i=1}^{n}({x}_{i}-\overline{x})({y}_{i}-\overline{y})}{\sum_{i=1}^{n}({x}_{i}-\overline{x})^{2}}$,$\widehat{a}$=$\overline{y}$-$\widehat{b}$$\overline{x}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

12.已知$\overrightarrow{OA}$=(-1,3),$\overrightarrow{OB}$=(3,-1),$\overrightarrow{OC}$=(m,1)
(1)若$\overrightarrow{AB}$∥$\overrightarrow{OC}$,求实数m的值;
(2)若$\overrightarrow{AC}$⊥$\overrightarrow{BC}$,求实数m的值.

查看答案和解析>>

同步练习册答案