精英家教网 > 高中数学 > 题目详情
14.若数列$\sqrt{2}$,$\sqrt{5}$,$2\sqrt{2}$,$\sqrt{11}$,$\sqrt{14}$,…,则$4\sqrt{2}$是这个数列的第(  )项.
A.8B.9C.10D.11

分析 数列$\sqrt{2}$,$\sqrt{5}$,$2\sqrt{2}$,$\sqrt{11}$,$\sqrt{14}$,…,即数列$\sqrt{2}$,$\sqrt{5}$,$\sqrt{8}$,$\sqrt{11}$,$\sqrt{14}$,…,其被开方数成等差数列,利用通项公式即可得出.

解答 解:数列$\sqrt{2}$,$\sqrt{5}$,$2\sqrt{2}$,$\sqrt{11}$,$\sqrt{14}$,…,即数列$\sqrt{2}$,$\sqrt{5}$,$\sqrt{8}$,$\sqrt{11}$,$\sqrt{14}$,…,
其被开方数成等差数列,首项为2,公差为5-2=3.
∴an=2+3(n-1)=3n-1.
令3n-1=32,
解得n=11.
则$4\sqrt{2}$即$\sqrt{32}$是这个数列的第11项.
故选:D.

点评 本题考查了等差数列的通项公式,考查了推理能力与计算能力,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

4.如图,在棱长为a(a>0)的正四面体ABCD中,点B1,C1,D1分别在棱AB,AC,AD上,且平面B1C1D1∥平面BCD,A1为△BCD内一点,记三棱锥A1-B1C1D1的体积V,设$\frac{A{D}_{1}}{AD}$=x,对于函数V=f(x),则(  )
A.当x=$\frac{2}{3}$时,函数f(x)取到最大值
B.函数f(x)在($\frac{1}{2}$,1)上是减函数
C.函数f(x)的图象关于直线x=$\frac{1}{2}$对称
D.存在x0,使得f(x0)$>\frac{1}{3}{V}_{A-BCD}$(其中VA-BCD为四面体ABCD的体积)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

5.下列叙述正确的个数是(  )
①若命题p:?x0∈R,x02-x0+1=0,则¬p:?x∈R,x2-x+1>0;
②已知向量$\overrightarrow{a}$,$\overrightarrow{b}$,则$\overrightarrow{a}$•$\overrightarrow{b}$<0是$\overrightarrow{a}$与$\overrightarrow{b}$的夹角为钝角的充要条件;
③已知ξ服从正态分布N(0,σ2),且P(-2≤ξ≤2)=0.4,则P(ξ>2)=0.3;
④在区间[0,π]上随机取一个数x,则事件“tanx•cosx≥$\frac{1}{2}$”发生的概率为$\frac{5}{6}$.
A.1B.2C.3D.4

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

2.设命题p:函数y=-xsinx的图象关于原点对称,
命题q:函数y=-xsinx在区间[0,$\frac{π}{2}$]上单调递减,
则下列命题中正确的是(  )
A.p∧qB.¬p∧qC.p∨(¬q)D.(¬p)∧(¬q)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.某火锅店为了了解气温对营业额的影响,随机记录了该店1月份中5天的日营业额y(单位:千元)与该地当日最低气温x(单位:℃)的数据,如表:
x258911
y1210887
(Ⅰ)求y关于x的回归方程$\stackrel{∧}{y}$=$\stackrel{∧}{b}$x+$\stackrel{∧}{a}$
(Ⅱ)判定y与x之间是正相关还是负相关;若该地1月份某天的最低气温为6℃,用所求回归方程预测该店当日的营业额
附:回归方程$\stackrel{∧}{y}$=$\stackrel{∧}{b}$x+$\stackrel{∧}{a}$中,$\stackrel{∧}{b}$=$\frac{\sum_{i=1}^{n}{x}_{i}{y}_{i}-n\overline{x}\overline{y}}{\sum_{i=1}^{n}{{x}_{i}}^{2}-n{\overline{x}}^{2}}$,$\stackrel{∧}{a}$=$\overline{y}$-b$\overline{x}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

19.在△ABC中,角A、B、C所对的边分别为a、b、c.若c=3,$C=\frac{π}{3}$,且a+b=4,则△ABC的面积为(  )
A.$\frac{7\sqrt{3}}{12}$B.$\frac{7\sqrt{3}}{4}$C.$\frac{7}{12}$D.$\frac{5\sqrt{3}}{12}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.已知tanα=-3,求下列各式的值:
(1)$\frac{sinα-3cosα}{sinα+cosα}$;          
(2)sin2α+sinαcosα+2.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

3.设数列{an}(n=1,2,3…)的前n项和Sn满足Sn+a1=2an,且a1,a2+1,a3成等差数列.则a1+a5=34.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.$\underset{lim}{n→∞}$$\sum_{i=1}^{n}$($\frac{1}{n}$sin$\frac{i}{n}$)=(  )
A.1-cos1B.1-sin1C.$\frac{π}{2}$D.-$\frac{π}{2}$

查看答案和解析>>

同步练习册答案