| A. | $\sqrt{5}$ | B. | $\sqrt{3}$ | C. | 1 | D. | $\frac{1}{2}$ |
分析 由向量的垂直关系可得m值,代入模长公式计算可得.
解答 解:∵$\overrightarrow{a}$=(1,-2),$\overrightarrow{b}$=(2,m),且$\overrightarrow{a}$⊥$\overrightarrow{b}$,
∴$\overrightarrow{a}$•$\overrightarrow{b}$=1×2-2m=0,解得m=1,
∴$\overrightarrow{b}$=(2,1),
∴|$\overrightarrow{b}$|=$\sqrt{{2}^{2}+{1}^{2}}$=$\sqrt{5}$
故选:A
点评 本题考查平面向量的垂直关系和模长公式,属基础题.
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 1 | B. | 2 | C. | 3 | D. | 4 |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | $\frac{π}{3}$ | B. | $\frac{π}{4}$ | C. | $\frac{π}{12}$ | D. | $\frac{5π}{12}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | p∧q | B. | ¬p∧q | C. | p∨(¬q) | D. | (¬p)∧(¬q) |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | $\frac{7\sqrt{3}}{12}$ | B. | $\frac{7\sqrt{3}}{4}$ | C. | $\frac{7}{12}$ | D. | $\frac{5\sqrt{3}}{12}$ |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com