精英家教网 > 高中数学 > 题目详情
19.如图,已知四棱锥P-ABCD的底面是菱形,PA⊥平面ABCD,∠ABC=60°,E,F,H分别是BC,PC,PD的中点.
(Ⅰ)证明:AE⊥PD;
(Ⅱ)设平面PAB∩平面PCD=l,求证:FH∥l;
(Ⅲ)若AB=1,且AF=$\frac{\sqrt{2}}{2}$,求多面体AEFH的体积.

分析 (I)由PA⊥平面ABCD得PA⊥AE,由△ABC是等边三角形,AD∥BC得AE⊥AD,故AE⊥平面PAD,于是AE⊥PD;
(II)由中位线定理得FH∥BC∥AB,故FH∥平面PAB,由线面平行的性质可得FH∥l;
(III)连结AC,则PA⊥AC,根据直角三角形的性质求出PC,PA,取AD中点G,则HG=$\frac{1}{2}PA$,FH=$\frac{1}{2}CD$,由HG⊥平面ABCD可得HG⊥CD,从而HG⊥FH,过A作AM⊥EG,则AM⊥平面EFHG,
AM为等边三角形ACD的高的一半,代入体积公式即可求出棱锥的体积.

解答 证明:(I)∵PA⊥平面ABCD,AE?平面ABCD,
∴PA⊥AE,
连结AC,∵四边形ABCD是菱形,∠ABC=60°,
∴△ABC是等边三角形,
∵E是BC的中点,
∴AE⊥BC,即AE⊥AD
又PA?平面PAD,AD?平面PAD,PA∩AD=A,
∴AE⊥平面PAD,∵PD?平面PAD,
∴AE⊥PD.
(2)∵F,H是PC,PD的中点,
∴FH∥CD,
又∵AB∥CD,
∴FH∥AB,∵FH?平面PAB,AB∥平面PAB,
∴FH∥平面PAB,
又FH?平面PCD,平面PAB∩平面PCD=l,
∴FH∥l.
(3)∵AB=1,∴AC=AD=BC=CD=1,∴AE=$\frac{\sqrt{3}}{2}$.
∵PA⊥平面ABCD,AC?平面ABCD,
∴PA⊥AC,
∵F是PC的中点,∴PC=2AF=$\sqrt{2}$,∴PA=$\sqrt{P{C}^{2}-A{C}^{2}}=1$.
取AD中点G,连结HG,EG,
则FH∥EG,FH=$\frac{1}{2}CD$=$\frac{1}{2}$,HG∥PA,HG=$\frac{1}{2}PA$=$\frac{1}{2}$.
∵PA⊥平面ABCD,
∴HG⊥平面ABCD,∴HG⊥EG,∴HG⊥FH,
∴S△EFH=$\frac{1}{2}FH•HG$=$\frac{1}{2}×\frac{1}{2}×\frac{1}{2}$=$\frac{1}{8}$.
过点A作AM⊥EG,垂足为M,则AM=$\frac{1}{2}AE$=$\frac{\sqrt{3}}{4}$.
又AM⊥HG,∴AM⊥平面EFHG,
∴VA-EFH=$\frac{1}{3}{S}_{△EFH}•AM$=$\frac{1}{3}×\frac{1}{8}×\frac{\sqrt{3}}{4}$=$\frac{\sqrt{3}}{96}$.

点评 本题考查了线面垂直的判定与性质,线面平行的性质,棱锥的体积计算,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

12.设i是虚数单位,复数z满足(1+i)z=2i50,则z的共轭复数$\overline{z}$为(  )
A.1+iB.1-iC.-1+iD.-1-i

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

13.函数f(x)=$\sqrt{\frac{1}{lgx}-2}$的定义域为(1,$\sqrt{10}$].

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.己知函数f(x)=ex(2x-1)-ax+a(a∈R),e为自然对数的底数.
(1)当a=1时,求函数f(x)的单调区间;
(2)①若存在实数x,满足f(x)<0,求实数a的取值范围:②若有且只有唯一整数x0,满足f(x0)<0,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

14.函数f(x)为定义在R上的奇函数,且在(0,+∞)上为增函数,f(3)=0,则不等式f(2x-1)≥0的解为(  )
A.$[{-1,\frac{1}{2}})∪[{2,+∞})$B.$[{-1,\frac{1}{2}}]∪({2,+∞})$C.[2,+∞)D.$[{-1,\frac{1}{2}})$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.已知双曲线$\frac{y^2}{a^2}-\frac{x^2}{b^2}=1(a>0,b>0)$的离心率为$\sqrt{5}$,则该双曲线的渐近线方程为(  )
A.y=±2xB.$y=±\frac{1}{2}x$C.$y=±\frac{1}{4}x$D.y=±4x

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

11.若双曲线$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{{b}^{2}}$=1(a>0,b>0)的一条渐近线的倾斜角为$\frac{2π}{3}$,离心率为e,$\frac{{a}^{2}+{e}^{2}}{b}$最小值为$\frac{4\sqrt{3}}{3}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

8.已知双曲线的一条渐近线方程是y=$\sqrt{3}$x,它的一个焦点在抛物线y2=8x的准线上,则该双曲线的标准方程为x2-$\frac{{y}^{2}}{3}$=1.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

9.已知点A是抛物线C:x2=2py(p>0)上一点,O为坐标原点,若以点M(0,8)为圆心,|OA|的长为半径的圆交抛物线C于A,B两点,且△ABO为等边三角形,则p的值是(  )
A.$\frac{3}{8}$B.2C.6D.$\frac{2}{3}$

查看答案和解析>>

同步练习册答案