精英家教网 > 高中数学 > 题目详情
已知函数f(x)=ax3+bx2-3x在x=1处取得极值-2.
(1)求函数f(x)的解析式;
(2)求曲线y=f(x)在点(2,f(2))处的切线方程.
考点:利用导数研究函数的极值,利用导数研究曲线上某点切线方程
专题:导数的概念及应用
分析:(1)先求出函数的导函数,得出方程组,解出a,b的值,从而求出函数的表达式;
(2))由f'(x)=3x2-3因此f'(2)=3×22-3=9,又f(2)=23-3×2=2故曲线y=f(x)在点(2,f(2))处的切线方程容易求出.
解答: 解:(1)∵f'(x)=3ax2+2bx-3,
依题意有,
f′(1)=0
f(1)=-2

即 
3a+2b-3=0
a+b-3=-2

解得a=1,b=0.
∴f(x)=x3-3x,
(2)∵f'(x)=3x2-3
∴f'(2)=3×22-3=9,
又f(2)=23-3×2=2
故曲线y=f(x)在点(2,f(2))处的切线方程为:
y-2=9(x-2),
即9x-y-16=0.
点评:本题考察了利用导数求函数的单调性,求函数的不等式问题,求曲线的切线方程问题,本题是一道基础题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知函数f(x)=
1
2
x2-3x,g(x)=m-2lnx.
(Ⅰ)求f(x)在x=2处的切线方程;
(Ⅱ)是否存在实数m,使得y=f(x)的图象与y=g(x)的图象有且仅有三个不同的交点?若存在,求出m的值或范围;若不存在,说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知椭圆C1
x2
a2
+
y2
b2
=1的离心率与双曲线y2-
x2
2
=1的离心率互为倒数,直线l:y=x+2与以原点为圆心,以椭圆C1的短半轴长为半径的圆相切.
(1)求椭圆C1的方程;
(2)设椭圆C1的左焦点为
F
 
1
,右焦点为F2,直线l1过点F1且垂直于椭圆的长轴,动直线l2垂直l1于点P,线段PF2垂直平分线交l2于点M,求点M的轨迹C2的方程;
(3)设第(2)问中的C2与x轴交于点Q,不同的两点R,S在C2上,且满足
QR
RS
=0
,求|
QS
|
的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=x3-
3
2
x2+8.
(1)求f(x)的单调区间;
(2)求f(x)在区间[0,2]上的最值.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=ax3+48(a-2)x,a∈R.若f′(2)=-36
(Ⅰ)求a的值;
(Ⅱ)求f(x)的单调区间及极值.

查看答案和解析>>

科目:高中数学 来源: 题型:

求下列函数的导数
(1)y=(2x+1)(x2-3)
(2)y=
x2
ex

查看答案和解析>>

科目:高中数学 来源: 题型:

已知数列{an}满足递推关系式an+1=2an+2n-1(n∈N*),且{
an
2n
}为等差数列,则λ的值是
 

查看答案和解析>>

科目:高中数学 来源: 题型:

已知sinα=
2
3
,则cos(
π
2
+α)=
 

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=x3+ax2+bx+c在x=-
2
3
与x=1时都取得极值,则a=
 
,b=
 

查看答案和解析>>

同步练习册答案