精英家教网 > 高中数学 > 题目详情
16.已知椭圆$\frac{x^2}{4}+\frac{y^2}{20}$=1的焦点坐标为  (  )
A.(±4,0)B.(±2,0)C.(0,±4)D.(0,±2)

分析 利用椭圆方程,求解a,b,c,即可得到结果.

解答 解:椭圆$\frac{x^2}{4}+\frac{y^2}{20}$=1,可得a=2$\sqrt{5}$,b=2,c=$\sqrt{{a}^{2}-{b}^{2}}$=4.
椭圆的焦点坐标在y轴上,所以椭圆$\frac{x^2}{4}+\frac{y^2}{20}$=1的焦点坐标为:(0,±4).
故选:C.

点评 本题考查椭圆的简单性质的应用,考查计算能力.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

6.设X={$\frac{1}{2}$,$\frac{1}{3}$,$\frac{1}{4}$,$\frac{1}{5}$},若集合G⊆X,定义G中所有元素之乘积为集合G的“积数”(单元素集合的“积数”是这个元素本身),则集合X的所有非空子集的“积数”的总和为2.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

7.${∫}_{-a}^{a}$x[f(x)+f(-x)]dx等于(  )
A.4${∫}_{0}^{a}$xf(x)dxB.2${∫}_{0}^{a}$x[f(x)+f(-x)]dxC.0D.以上都不正确

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

4.f(x)定义在R上的偶函数,且x≥0时,f(x)=x3,若对任意x∈[2t-1,2t+3],不等式f(3x-t)≥8f(x)恒成立,则实数t的取值范围是(-∞,-3]∪{0}∪[1,+∞).

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

11.满足{-1,0,1}?M⊆{-1,0,1,2,3,4}的集合M的个数是(  )
A.4个B.6个C.7个D.8个

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.设函数y=f(x)在(-∞,+∞)内有定义,对于给定的正数k,定义函数:${f_k}(x)=\left\{\begin{array}{l}f(x)(f(x)≤k)\\ k\;\;\;\;\;\;(f(x)>k)\end{array}\right.$,取函数f(x)=2-x-e-x,若对任意的x∈(-∞,+∞),恒有fk(x)=f(x),则(  )
A.k的最大值为2B.k的最小值为2C.k的最大值为1D.k的最小值为1

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

8.已知三个不等式:①ab<0;②$-\frac{c}{a}<-\frac{d}{b}$;③bc<ad,以其中两个为条件,余下的一个作为结论,则可以组成3个正确的命题.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

5.设集合U={1,2,3,4,5}为全集,A={1,2,3},B={2,5},则(∁UB)∩A=(  )
A.{2}B.{2,3}C.{3}D.{1,3}

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

6.为了得到$y=3sin({2x+\frac{π}{3}})$函数的图象,只需把y=3sinx上所有的点(  )
A.先把横坐标缩短到原来的$\frac{1}{2}$倍,然后向左平移$\frac{π}{6}$个单位
B.先把横坐标缩短到原来的2倍,然后向左平移$\frac{π}{6}$个单位
C.先把横坐标缩短到原来的2倍,然后向左右移$\frac{π}{3}$个单位
D.先把横坐标缩短到原来的$\frac{1}{2}$倍,然后向右平移$\frac{π}{3}$个单位

查看答案和解析>>

同步练习册答案