【题目】函数f(x),g(x)的定义域都是D,直线x=x0(x0∈D),与y=f(x),y=g(x)的图象分别交于A,B两点,若|AB|的值是不等于0的常数,则称曲线 y=f(x),y=g(x)为“平行曲线”,设f(x)=ex﹣alnx+c(a>0,c≠0),且y=f(x),y=g(x)为区间(0,+∞)的“平行曲线”,g(1)=e,g(x)在区间(2,3)上的零点唯一,则a的取值范围是 .
科目:高中数学 来源: 题型:
【题目】已知在△ABC中,∠A,∠B,∠C所对的边分别为a,b,c,若 且sinC=cosA (Ⅰ)求角A、B、C的大小;
(Ⅱ)函数f(x)=sin(2x+A)+cos(2x﹣ ),求函数f(x)单调递增区间,指出它相邻两对称轴间的距离.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知椭圆C: =1的左焦点F1的坐标为(﹣ ,0),F2是它的右焦点,点M是椭圆C上一点,△MF1F2的周长等于4+2 .
(1)求椭圆C的方程;
(2)过定点P(0,2)作直线l与椭圆C交于不同的两点A,B,且OA⊥OB(其中O为坐标原点),求直线l的方程.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】函数(其中)的部分图象如图所示,把函数的图像向右平移个单位长度,再向下平移个单位,得到函数的图像。
(1)当时,若方程恰好有两个不同的根,求的取值范围及的值;
(2)令,若对任意都有恒成立,求的最大值
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】通过随机询问250名不同性别的高中生在购买食物时是否看营养说明书,得到如下列联表:
女 | 男 | 总计 | |
读营养说明书 | 90 | 60 | 150 |
不读营养说明书 | 30 | 70 | 100 |
总计 | 120 | 130 | 250 |
从调查的结果分析,认为性别和读营养说明书的关系为( )
附:
0.15 | 0.10 | 0.05 | 0.025 | 0.010 | 0.005 | 0.001 | |
2.072 | 2.706 | 3.841 | 5.024 | 6.635 | 7.879 | 10.828 |
.
A. 95%以上认为无关 B. 90%~95%认为有关 C. 95%~99.9%认为有关 D. 99.9%以上认为有关
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】设函数f(x)= ﹣k( +lnx)(k为常数,e=2.71828…是自然对数的底数). (Ⅰ)当k≤0时,求函数f(x)的单调区间;
(Ⅱ)若函数f(x)在(0,2)内存在两个极值点,求k的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】设有下面四个命题
p1:若复数z满足 ∈R,则z∈R;
p2:若复数z满足z2∈R,则z∈R;
p3:若复数z1 , z2满足z1z2∈R,则z1= ;
p4:若复数z∈R,则 ∈R.
其中的真命题为( )
A.p1 , p3
B.p1 , p4
C.p2 , p3
D.p2 , p4
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com