精英家教网 > 高中数学 > 题目详情
已知集合A={x|x2-2x-3≤0},B={x|x2-2mx+m2-4≤0,x∈R,m∈R}.
(1)当m=2时,求A∪B;
(2)若A∩B=[1,3],求实数m的值;
(3)若A⊆∁RB,求实数m的取值范围.
考点:集合的包含关系判断及应用
专题:计算题,集合
分析:(1)先求出集合A,B,可求A∪B;
(2)利用A∩B=[1,3],确定实数m的值.
(3)求出∁RB,利用条件A⊆∁RB,确定条件关系,即可求实数m的取值范围.
解答: 解:(1)∵A={x|x2-2x-3≤0,x∈R},
∴A={x|-1≤x≤3,x∈R},
∵B={x|x2-4x≤0}={x|0≤x≤4},
∴A∪B=[-1,4];
(2)∵A∩B=[1,3],
∴m-2=1,即m=3,
此时B={x|1≤x≤5},满足条件A∩B=[1,3].
(3)∵B={x|m-2≤x≤m+2}.
∴∁RB={x|x>m+2或x<m-2},
要使A⊆∁RB,
则3<m-2或-1>m+2,
解得m>5或m<-3,
即实数m的取值范围是m>5或m<-3.
点评:本题主要考查集合的基本运算,以及利用集合关系求参数问题,考查学生分析问题的能力.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

在△ABC中,有a2+b2-c2=ab,则角C为(  )
A、60°B、120°
C、30°D、45°或135°

查看答案和解析>>

科目:高中数学 来源: 题型:

△ABC中,角A,B,C所对的边分别是a,b,c,若
a-c
b-c
=
sinB
sinA+sinC

(1)求角A;
(2)若f(x)=sin2(x+A)-cos2(x+A),求f(x)的单调递增区间.

查看答案和解析>>

科目:高中数学 来源: 题型:

在某次试验中,有两个试验数据x,y统计的结果如下面的表格1.
x 1 2 3 4 5
y 2 3 4 4 5
参考数据:
序号 x y x2 xy
1 1 2 1 2
2 2 3 4 6
3 3 4 9 12
4 4 4 16 16
5 5 5 25 25
表格2
(1)在给出的坐标系中画出x,y的散点图.
(2)补全表格2,然后根据表格2的内容和公式
b
=
n
i=1
xiyi-n
.
x
.
y
n
i=1
xi2-n
.
x
2
a
=
.
y
-
b
.
x

①求出y对x的回归直线方程
y
=
b
x+
a
中回归系数
a
b

②估计当x为10时
y
的值是多少?

查看答案和解析>>

科目:高中数学 来源: 题型:

已知数列{an}中,a1=6,an+1+an=3•2n+1,n∈N*
(Ⅰ)设bn=an-2n+1,证明:数列{bn}是等比数列;
(Ⅱ)在数列{an}中,是否存在连续三项成等差数列?若存在,求出所有符合条件的项;若不存在,请说明理由;
(Ⅲ)若1<r<s且r,s∈N*,求证:使得a1,ar,as成等差数列的点列(r,s)在某一条直线上.

查看答案和解析>>

科目:高中数学 来源: 题型:

(1)已知tanα=2,求sin2α+sinαcosα+2cos2α
(2)已知:sin( 
12
+α)=
3
4
,求cos(
π
12
-α)

查看答案和解析>>

科目:高中数学 来源: 题型:

设等差数列{an}的前n项和为Sn,公差为d.已知S2,S3+1,S4成等差数列.
(Ⅰ)求d的值;
(Ⅱ)若a1,a2,a5成等比数列,求
an-2
Sn
(n∈N*)的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知双曲线C:
x2
a2
-
y2
b2
=1(a>0,b>0),设P是双曲线C上任意一点,O为坐标原点,设F为双曲线右焦点.
(1)若双曲线C满足:无论点P在右支的何处,总有|PO|>|PF|,求双曲线C在第一、三象限的那条渐近线的倾斜角的取值范围;
(2)过右焦点F的动直线l交双曲线于A、B两点,是否存在这样的a,b的值,使得△OAB为等边三角形.若存在,求出所有满足条件的a,b的值;若不存在,说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知:长方体ABCD-A1B1C1D1,AB=2,AD=4,AA1=4,O为对角线AC1的中点,过O的直线与长方体表面交于两点M,N,P为长方体表面上的动点,则
PM
PN
的取值范围是
 

查看答案和解析>>

同步练习册答案