精英家教网 > 高中数学 > 题目详情
求下列函数的定义域:
(1)y=
x-2
;                 
(2)y=
log2x-3
考点:函数的定义域及其求法
专题:函数的性质及应用
分析:根据函数的解析式,列出使函数解析式有意义的不等式(组),求出解集即可.
解答: 解:(1)根据题意,得;
x-2≥0,
解得x≥2,
∴函数的定义域是[2,+∞);
(2)根据题意,得;
log2x-3≥0,
即log2x≥3,
解得x≥8;
∴函数的定义域是[8,+∞).
点评:本题考查了求函数解析式的问题,解题时应根据函数的解析式,使解析式有意义,求出自变量的取值范围,是容易题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

定义在R上的偶函数f(x)满足f(π+x)=f(π-x),若x∈[0,π]时解析为f(x)=cosx,则f(x)>0的解集是(  )(k∈z)
A、(2kπ-
3
2
π,2kπ+
π
2
B、(2kπ-
π
2
,2kπ+
π
2
C、(2kπ,2kπ+π)
D、(2kπ,2kπ+
π
2

查看答案和解析>>

科目:高中数学 来源: 题型:

直线x-
3
y+2=0被圆x2+y2=4截得的弦长为(  )
A、1
B、2
C、
3
D、2
3

查看答案和解析>>

科目:高中数学 来源: 题型:

执行如图所示的程序框图,若输入数据m=5,则输出的S结果为(  )
A、642B、258
C、98D、94

查看答案和解析>>

科目:高中数学 来源: 题型:

定义在R上的函数f(x)=
1
3
x3-2x2+(3+a)x,a∈R.
(Ⅰ)当a=1时,求函数在[-1,1]上的最大值;
(Ⅱ)求函数的单调区间.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=x3-
1
2
x2+bx+c,且f(x)在x=1处取得极值.
(Ⅰ)求b的值;
(Ⅱ)若当x∈[-1,2]时,f(x)<c2恒成立,求c的取值范围;
(Ⅲ)对任意的x1,x2∈[-1,2],|f(x1)-f(x2)|≤
7
2
是否恒成立?如果成立,给出证明,如果不成立,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知关于m的不等式x2(m+1)-2mx-4>0对一切0<m<1恒成立,求x的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知六棱锥P-ABCDEF的底面是正六边形,证明:AB∥CF.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知△ABC中,A(1,3),AB、AC边上中线方程分别为x-2y+1=0,y-1=0,求顶点B、C两点的坐标.

查看答案和解析>>

同步练习册答案