精英家教网 > 高中数学 > 题目详情
已知椭圆=1(a>b>0)的左右焦点分别是F1(-c,0)、F2(c,0),Q是椭圆外的动点,满足||=2a.点P是线段F1Q与该椭圆的交点,点T在线段F2Q上,并且满足=0,||≠0.

(1)设x为点P的横坐标,证明||=a+

(2)求点T的轨迹C的方程.

思路解析:本题主要考查平面向量、椭圆的定义、标准方程和有关性质,轨迹的求法和应用,以及综合运用数学知识解决问题的能力,其中数形结合是解析几何解决问题的常用方法.

(1)证明:设点P的坐标为(x,y),

由P(x,y)在椭圆上,得||=

=.

由x≥-a,知a+≥-c+a>0.所以||=a+.

(2)解:设点T的坐标为(x,y),

当||=0时,点(a,0)和点(-a,0)在轨迹上.

当||≠0且||≠0时,

由||·||=0,得.

又||=||,所以T为线段F2Q的中点.

在△QF1F2中,||=||=a,所以有x2+y2=a2.

综上所述,点T的轨迹方程是x2+y2=a2.

方法归纳  求轨迹时可以从两个方面来解:设动点的坐标,利用题目给出的条件整理得出方程;观察曲线的几何特征,直接由曲线的定义得出.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知椭圆=1(a>b>0)与x轴的正半轴交于点A,O是原点.若椭圆上存在一点M,使MA⊥MO,求椭圆离心率e的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知椭圆+=1(a>b>0)与双曲线-=1(m>0,n>0)有相同的焦点(-c,0)和(c,0),若c是a、m的等比中项,n2是2m2与c2的等差中项,则椭圆的离心率是(    )

A.              B.             C.                 D.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知椭圆+=1(a>b>0)内有一点A,F1为左焦点,F2为右焦点,在椭圆上求一点P,使|PF1|+|PA|取得最值.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知椭圆+=1 (a>b>0)的左焦点到右准线的距离为,中心到准线的距离为,则椭圆的方程为__________.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知椭圆+=1 (a>b>0)的两准线间的距离为,离心率为,则椭圆的方程为(    )

A. +=1                                      B. +=1

C. +=1                                      D. +=1

查看答案和解析>>

同步练习册答案