| A. | $\frac{\sqrt{14}}{2}$ | B. | $\sqrt{14}$ | C. | $\frac{\sqrt{7}}{2}$ | D. | $\sqrt{7}$ |
分析 把直线l的参数方程、曲线C的极坐标方程都化为普通方程,利用圆心到直线l的距离d与半径r求出弦长|AB|的值.
解答 解:把直线l的参数方程$\left\{\begin{array}{l}{x=2+t}\\{y=1-t}\end{array}\right.$(t为参数)化为普通方程是
x+y-3=0,
把曲线C的极坐标方程ρ=4sinθ变形为
ρ2=4ρsinθ,
化为普通方程是x2+y2=4y,
即x2+(y-2)2=4,
它表示圆心为(0,2),半径r=2的圆;
则圆心到直线l的距离为
d=$\frac{|2-3|}{\sqrt{2}}$=$\frac{\sqrt{2}}{2}$,
所以,直线l被曲线C截得的弦长为
|AB|=2$\sqrt{{r}^{2}{-d}^{2}}$=2$\sqrt{{2}^{2}{-(\frac{\sqrt{2}}{2})}^{2}}$=$\sqrt{14}$.
故选:B.
点评 本题考查了直线的参数方程与圆的极坐标方程的应用问题,解题时可以化为普通方程进行解答,是基础题目.
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | [-1,0] | B. | (-1,3] | C. | [0,1) | D. | {-1,3} |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 第四象限 | B. | 第三象限 | C. | 第二象限 | D. | 第一象限 |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 向右平移$\frac{π}{2}$个单位 | B. | 向右平移$\frac{π}{4}$个单位 | ||
| C. | 向左平移$\frac{π}{2}$个单位 | D. | 向左平移π个单位 |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com