精英家教网 > 高中数学 > 题目详情
14.下列说法中正确的个数为(  )
①若样本数据x1,x2,…,xn的平均数$\overline x$=5,则样本数据2x1+1,2x2+1,…,2xn+1的平均数为10
②将一组数据中的每个数据都减去同一个数后,平均数与方差均没有变化
③采用系统抽样法从某班按学号抽取5名同学参加活动,学号为5,16,27,38,49的同学均被选出,则该班学生人数可能为60.
A.0B.1C.2D.3

分析 ①根据样本平均数之间的关系进行判断,
②根据样本平均数和方差的定义和性质进行判断.
③根据系统抽样的定义,判断班级人数为55,进行判断.

解答 解:①若样本数据x1,x2,…,xn的平均数$\overline x$=5,则样本数据2x1+1,2x2+1,…,2xn+1的平均数为2$\overline x$+1=2×5+1=11,故①错误,
②将一组数据中的每个数据都减去同一个数后,平均数发生变化,方差没有变化,故②错误
③采用系统抽样法从某班按学号抽取5名同学参加活动,学号为5,16,27,38,49的同学均被选出,
则样本间隔为16-5=11,则则该班学生人数可能为11×5=55人,故③错误,
故正确的为0个,
故选:A.

点评 本题主要考查命题的真假判断,涉及知识点较多,但一般难度不大,比较基础.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

4.如图,长方形ABCD,M,N分别为AB,AD上异于点A的两点,现把△AMN沿着MN翻折,记AC与平面BCD所成的角为θ1,直线AC与直线MN所成的角为θ2,则θ1与θ2的大小关系是(  )
A.θ12B.θ1>θ2C.θ1<θ2D.不能确定

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

5.(x-$\frac{a}{x}$)(1-$\sqrt{x}$)6的展开式中x的系数是31,则常数a=-2.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.已知椭圆C:$\frac{x^2}{a^2}$+$\frac{y^2}{b^2}$=1(a>b>0)的上顶点为(0,2),且离心率为$\frac{{\sqrt{5}}}{3}$.
(1)求椭圆C的方程;
(2)从椭圆C上一点P向圆x2+y2=1引两条切线,切点为A,B,当直线AB分别与x轴,y轴交于N,M两点时,求|MN|的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

9.已知P是抛物线M:y2=4x上的任意点,过点P作圆C:(x-3)2+y2=1的两条切线,切点分别为A,B,连CA,CB,则四边形PACB的面积最小值时,点 P的坐标为(1,2)或(1,-2).

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

19.某市为了了解今年高中毕业生的体能状况,从某校高中毕业班中抽取一个班进行铅球测试,成绩在8.0米(精确到0.1米)以上的为合格.数据分成6组画出频率分布直方图的一部分(如图),已知从左到右前5个小组的频率分别为0.04,0.10,0.14,0.28,0.30.第6小组的频数是7.
(Ⅰ)求这次铅球测试成绩合格的人数;
(Ⅱ)若参加测试的学生中9人成绩优秀,现要从成绩优秀的学生中,随机选出2人参加“毕业运动会”,已知学生a、b的成绩均为优秀,求两人a、b至少有1人入选的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

6.设向量$\overrightarrow a$=(-1,1),$\overrightarrow b$=(2,t),且$\overrightarrow a$•$\overrightarrow b$=-1,则实数t=(  )
A.0B.-1C.-2D.1

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.已知等差数列{an}的前n项和为Sn,且S9=90,S15=240.
(1)求{an}的通项公式an和前n项和Sn
(2)设anbn=$\frac{1}{(n+1)}$,Sn为数列{bn}的前n项和,若不等式Sn<t对于任意的n∈N*恒成立,求实数t的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

4.已知an=logn+1(n+2)(n∈N*),观察下列算式:
a1•a2=log23•log34=$\frac{lg3}{lg2}$•$\frac{lg4}{lg3}$=2;
a1•a2•a3•a4•a5•a6=log23•log34•…•${log}_{{7}^{8}}$=$\frac{lg3}{lg2}$•$\frac{lg4}{lg3}$•…•$\frac{lg8}{lg7}$=3…;
若a1•a2•a3…am=2016(m∈N*),则m的值为22016-2.

查看答案和解析>>

同步练习册答案