精英家教网 > 高中数学 > 题目详情
4.如图,长方形ABCD,M,N分别为AB,AD上异于点A的两点,现把△AMN沿着MN翻折,记AC与平面BCD所成的角为θ1,直线AC与直线MN所成的角为θ2,则θ1与θ2的大小关系是(  )
A.θ12B.θ1>θ2C.θ1<θ2D.不能确定

分析 作AO⊥平面BCD,垂足是O,连接CO,过点C作直线l∥MN,在l上取点H,令CH=CO,在△AOC和△AHC中,CO=CH,AO⊥平面BCD,从而AO<AH,由此能求出θ1<θ2

解答 解:作AO⊥平面BCD,垂足是O,连接C
过点C作直线l∥MN,在l上取点H,令CH=CO,
在△AOC和△AHC中,CO=CH,AO⊥平面BCD,
∴AO<AH,
∴∠ACO<∠ACH,
∵AC与平面BCD所成的角为θ1,直线AC与直线MN所成的角为θ2
AO⊥平面BCD,CH∥MN,
∴∠ACO=θ1,∠ACH=θ2
∴θ1<θ2
故选:C.

点评 本题考查直线与平面所成的角和直线与直线所成的角的大小关系的判断,是中档题,解题时要认真审题,注意空间思维能力的培养.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

4.如图所示,正方形AA1D1D与矩形ABCD所在平面互相垂直,AB=2AD=2,点E为AB的中点.
(1)求证:BD1∥平面A1DE;
(2)求直线A1E与平面AD1E所成角.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

15.如图,在长方体ABCD-A1B1C1D1中,AB=4,AD=AA1=3,M是线段B1D1的中点.
(1)求证:BM∥平面D1AC
(2)求B1到平面D1AC的距离.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

12.函数y=x2+4x+3,x∈[-3,+∞)的值域是[-1,+∞).

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

19.某中学对男女学生是否喜爱古典音乐进行了一个调查,调查者对学校高三年级随机抽取了100名学生,调查结果如表:
喜爱不喜爱总计
男学生6080
女学生
总计7030
(1)完成如表,并根据表中数据,判断是否有95%的把握认为“男学生和女学生喜欢古典音乐的程度有差异”;
(2)从以上被调查的学生中以性别为依据采用分层抽样的方式抽取10名学生,再从这10名学生中随机抽取5名学生去某古典音乐会的现场观看演出,求正好有X个男生去观看演出的分布列及期望.
附:K2=$\frac{n(ad-bc)^{2}}{(a+b)(c+d)(a+c)(b+d)}$
P(K2≥k00.1000.0500.010
k02.7063.8416.635

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

9.已知函数f(x)=sinx+x3,x∈R,若实数a,b满足f(a-1)+f(b)=0,则a+b=1.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

16.某种产品具有一定时效性,在这个时期内,由市场调查可知:每件产品获利a元,在不作广告宣传的前提下可卖出b件;若作广告宣传,广告费为n+1(n∈N)千元时比广告费为n千元时多卖出$\frac{b}{{2}^{n+1}}$件,设作n(n∈N)千元广告时销售量为Cn件.
(1)试写出销售量Cn与n(n∈N)的函数关系式.
(2)当a=10,b=4000时,厂家应作几千元广告,才能获取最大利润?

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

13.一个学校高一、高二、高三学生数之比为5:2:3,若用分层抽样抽取容量为200的样本,则应从高三学生中抽取的人数是(  )
A.20B.40C.60D.80

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

14.下列说法中正确的个数为(  )
①若样本数据x1,x2,…,xn的平均数$\overline x$=5,则样本数据2x1+1,2x2+1,…,2xn+1的平均数为10
②将一组数据中的每个数据都减去同一个数后,平均数与方差均没有变化
③采用系统抽样法从某班按学号抽取5名同学参加活动,学号为5,16,27,38,49的同学均被选出,则该班学生人数可能为60.
A.0B.1C.2D.3

查看答案和解析>>

同步练习册答案