精英家教网 > 高中数学 > 题目详情
16.某种产品具有一定时效性,在这个时期内,由市场调查可知:每件产品获利a元,在不作广告宣传的前提下可卖出b件;若作广告宣传,广告费为n+1(n∈N)千元时比广告费为n千元时多卖出$\frac{b}{{2}^{n+1}}$件,设作n(n∈N)千元广告时销售量为Cn件.
(1)试写出销售量Cn与n(n∈N)的函数关系式.
(2)当a=10,b=4000时,厂家应作几千元广告,才能获取最大利润?

分析 (1)根据在不作广告宣传的前提下可卖出b件;若作广告宣传,广告费为n+1(n∈N)千元时比广告费为n千元时多卖出$\frac{b}{{2}^{n+1}}$件,直接列式;
(2)b=4000时,Cn=4000(2-$\frac{1}{{2}^{n}}$),设获利为Tn,则有Tn=Cn•10-1000n=40000(2-$\frac{1}{{2}^{n}}$)-1000n欲使Tn最大,根据数列的单调性可得$\left\{\begin{array}{l}{{T}_{n}≥{T}_{n+1}}\\{{T}_{n}≥{T}_{n-1}}\end{array}\right.$,代入结合n为正整数解不等式可求n,进而可求最大利润.

解答 解:(1)广告费为1千元时,Cn=b+$\frac{b}{2}$;2千元时,Cn=b+$\frac{b}{2}$+$\frac{b}{{2}^{2}}$;
…n千元时,Cn=b+$\frac{b}{2}$+$\frac{b}{{2}^{2}}$+…+$\frac{b}{{2}^{n}}$=b(2-$\frac{1}{{2}^{n}}$);
(2)b=4000时,Cn=4000(2-$\frac{1}{{2}^{n}}$),设获利为Tn,则有Tn=Cn•10-1000n=40000(2-$\frac{1}{{2}^{n}}$)-1000n
欲使Tn最大,则$\left\{\begin{array}{l}{{T}_{n}≥{T}_{n+1}}\\{{T}_{n}≥{T}_{n-1}}\end{array}\right.$,得n=5,此时Tn=7875.
即该厂家应生产7875件产品,做5千元的广告,能使获利最大.

点评 本题主要考查了数列的叠加求解通项公式,利用数列的单调性求解数列的最大(小)项,解题中要注意函数思想在解题中的应用.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

16.已知等差数列{an}中,a3=8,a6=17.
(1)求a1,d;
(2)设bn=an+2n-1,求数列{bn}的前n项和Sn

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.2015年7月9日21时15分,台风“莲花”在我国广东省陆丰市甲东镇沿海登陆,给当地人民造成了巨大的财产损失,适逢暑假,小张调查了当地某小区的100户居民由于台风造成的经济损失,将收集的数据分成[0,2000],(2000,4000],(4000,6000],(6000,8000],(8000,10000]五组,并作出如图频率分布直方图(图1):

(Ⅰ)台风后居委会号召小区居民为台风重灾区捐款,小张调查的100户居民捐款情况如表格,在表格空白处填写正确数字,并说明是否有95%以上的把握认为捐款数额多于或少于500元和自身经济损失是否到4000元有关?
(Ⅱ)将上述调查所得到的频率视为概率.现在从该地区大量受灾居民中,采用随机抽样方法每次抽取1户居民,抽取3次,记被抽取的3户居民中自身经济损失超过4000元的人数为ξ.若每次抽取的结果是相互独立的,求ξ的分布列,期望E(ξ)和方差D(ξ).
经济损失不超过
4000元
经济损失超过
4000元
合计
捐款超过
500元
60
捐款不超
过500元
10
合计
附:临界值表
P(K2≥k)0.100.050.025
    k2.7063.8415.024
随机量变${K^2}=\frac{{(a+b+c+d){{(ad-bc)}^2}}}{(a+b)(c+d)(a+c)(b+d)}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.如图,长方形ABCD,M,N分别为AB,AD上异于点A的两点,现把△AMN沿着MN翻折,记AC与平面BCD所成的角为θ1,直线AC与直线MN所成的角为θ2,则θ1与θ2的大小关系是(  )
A.θ12B.θ1>θ2C.θ1<θ2D.不能确定

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.已知函数f(x)=log2$\frac{2x-1}{x+2}$.
(1)求f(x)的定义域A;
(2)若函数g(x)=3x2+6x+2在[-1,a](a>-1)内的值域为B,且A∩B=∅,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

1.已知四棱锥P-ABCD中,底面ABCD为矩形,且中心为O,AB=BO=1,PA=PB=PC=PD=2,则该四棱锥的外接球的体积为$\frac{32\sqrt{3}}{27}$π.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

8.如图,在△ABC中,点D在边BC上,∠CAD=$\frac{π}{4}$,AC=$\frac{7}{2}$,cos∠ADB=-$\frac{{\sqrt{2}}}{10}$.若△ABD的面积为7,则AB=$\sqrt{37}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

5.(x-$\frac{a}{x}$)(1-$\sqrt{x}$)6的展开式中x的系数是31,则常数a=-2.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

6.设向量$\overrightarrow a$=(-1,1),$\overrightarrow b$=(2,t),且$\overrightarrow a$•$\overrightarrow b$=-1,则实数t=(  )
A.0B.-1C.-2D.1

查看答案和解析>>

同步练习册答案