精英家教网 > 高中数学 > 题目详情
1.已知四棱锥P-ABCD中,底面ABCD为矩形,且中心为O,AB=BO=1,PA=PB=PC=PD=2,则该四棱锥的外接球的体积为$\frac{32\sqrt{3}}{27}$π.

分析 利用勾股定理,求出该四棱锥的外接球的半径,再利用球的体积公式,即可得出结论.

解答 解:由题意,PO⊥平面ABCD,PO=$\sqrt{{2}^{2}-{1}^{2}}$=$\sqrt{3}$,
设该四棱锥的外接球的半径为R,则R2=12+($\sqrt{3}$-R)2
∴R=$\frac{2}{\sqrt{3}}$,
∴四棱锥的外接球的体积为$\frac{4}{3}π•(\frac{2}{\sqrt{3}})^{3}$=$\frac{32\sqrt{3}}{27}$π.
故答案为:$\frac{32\sqrt{3}}{27}$π.

点评 本题考查四棱锥的外接球的体积,考查学生的计算能力,求出四棱锥的外接球的半径是关键.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

1.在正方体ABCD-A1B1C1D1的各个顶点与各棱的中点共20个点中,任取2点连成直线,在这些直线中任取一条,它与对角线BD1垂直的概率为(  )
A.$\frac{27}{190}$B.$\frac{12}{166}$C.$\frac{15}{166}$D.$\frac{27}{166}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

12.函数y=x2+4x+3,x∈[-3,+∞)的值域是[-1,+∞).

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

9.已知函数f(x)=sinx+x3,x∈R,若实数a,b满足f(a-1)+f(b)=0,则a+b=1.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

16.某种产品具有一定时效性,在这个时期内,由市场调查可知:每件产品获利a元,在不作广告宣传的前提下可卖出b件;若作广告宣传,广告费为n+1(n∈N)千元时比广告费为n千元时多卖出$\frac{b}{{2}^{n+1}}$件,设作n(n∈N)千元广告时销售量为Cn件.
(1)试写出销售量Cn与n(n∈N)的函数关系式.
(2)当a=10,b=4000时,厂家应作几千元广告,才能获取最大利润?

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

6.已知函数f(x)=sinx+λcosx(λ∈R)的图象关于x=-$\frac{π}{4}$对称,则把函数f(x)的图象上每个点的横坐标扩大到原来的2倍,再向右平移$\frac{π}{3}$,得到函数g(x)的图象,则函数g(x)的一条对称轴方程为(  )
A.x=$\frac{π}{6}$B.x=$\frac{π}{4}$C.x=$\frac{π}{3}$D.x=$\frac{11π}{6}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

13.一个学校高一、高二、高三学生数之比为5:2:3,若用分层抽样抽取容量为200的样本,则应从高三学生中抽取的人数是(  )
A.20B.40C.60D.80

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

10.四棱锥M-ABCD的底面ABCD是边长为6的正方形,若|MA|+|MB|=10,则三棱锥A-BCM的体积的最大值是24.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

11.y=$\sqrt{1-{{log}_{\frac{1}{3}}}x}$的定义域为$[\frac{1}{3},+∞)$.

查看答案和解析>>

同步练习册答案