| A. | x=$\frac{π}{6}$ | B. | x=$\frac{π}{4}$ | C. | x=$\frac{π}{3}$ | D. | x=$\frac{11π}{6}$ |
分析 利用函数y=Asin(ωx+φ)的图象变换规律,正弦函数的图象的对称性,求得函数g(x)的一条对称轴方程.
解答 解:根据函数f(x)=sinx+λcosx(λ∈R)的图象关于x=-$\frac{π}{4}$对称,可得$f(0)=f(-\frac{π}{2})$,
可得λ=-1,所以$f(x)=sinx-cosx=\sqrt{2}sin(x-\frac{π}{4})$.
把f(x)的图象横坐标扩大到原来的2倍,可得y=$\sqrt{2}$sin($\frac{1}{2}$x-$\frac{π}{4}$)的图象,
再向右平移$\frac{π}{3}$,得到函数g(x)=$\sqrt{2}$sin[$\frac{1}{2}$(x-$\frac{π}{3}$)-$\frac{π}{4}$]=$\sqrt{2}$sin($\frac{1}{2}$x-$\frac{5π}{12}$)的图象,
即g(x)=$\sqrt{2}$sin($\frac{1}{2}x$-$\frac{5π}{12}$),
令 $\frac{1}{2}•x-\frac{5π}{12}$=kπ+$\frac{π}{2}$,求得x=2kπ+$\frac{11π}{6}$,k∈Z,故函数g(x)的图象的对称轴方程为 x=2kπ+$\frac{11π}{6}$,k∈Z.
当k=0时,对称轴的方程为$x=\frac{11π}{6}$,
故选:D.
点评 本题主要考查函数y=Asin(ωx+φ)的图象变换规律,正弦函数的图象的对称性,属于基础题.
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | $\frac{16}{3}$ | B. | 6 | C. | $\frac{20}{3}$ | D. | $\frac{22}{3}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 1 | B. | 2 | C. | 3 | D. | 4 |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | $\frac{{4\sqrt{2}}}{9}$ | B. | $\frac{2}{9}$ | C. | $-\frac{2}{9}$ | D. | $-\frac{{4\sqrt{2}}}{9}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 第一象限 | B. | 第二象限 | C. | 第三象限 | D. | 第四象限 |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com