分析 (Ⅰ)根据递推公式即可求出{an}的通项公式,
(Ⅱ)利用“错位相减法”与等比数列的前n项和公式即可得出.
解答 解:(Ⅰ)∵S1=a1.
∴当n=1时,2a1-2=S1=a1,
∴a1=2,
当n≥2时,an=sn-sn-1=2an-2an-1,
∴an=2an-1
∴{an}的首项为a1=2,公比q=2的等比数列,
∴an=2n,n∈N*,
(Ⅱ)设Tn=1•a1+2•a2+3•a3+…+n•an,
∴Tn=1•21+2×22+3×23+…+n•2n,
∴2Tn=1•22+2×23+3×24+…+(n-1)2n+n•2n+1,
∴-Tn=21+22+23+24+…+2n-n•2n+1=$\frac{2(1-{2}^{n})}{1-2}$-n•2n+1=2n+1-2-n•2n+1=-2+(1-n)2n+1,
∴Tn=(n-1)2n+1+2,n∈N*.
点评 本题考查了“错位相减法”、等比数列的通项公式及其前n项和公式、递推式的应用,考查了推理能力与计算能力,属于中档题.
科目:高中数学 来源: 题型:选择题
| A. | (0,$\frac{\sqrt{2}}{2}$) | B. | (0,$\frac{\sqrt{3}}{3}$) | C. | (0,$\frac{\sqrt{5}}{5}$) | D. | (0,$\frac{\sqrt{6}}{6}$) |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | x=$\frac{π}{6}$ | B. | x=$\frac{π}{4}$ | C. | x=$\frac{π}{3}$ | D. | x=$\frac{11π}{6}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 20 | B. | 40 | C. | 60 | D. | 80 |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 24 | B. | 28 | C. | 32 | D. | 16 |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | $\frac{π}{6}$ | B. | $\frac{π}{3}$ | C. | $\frac{π}{2}$ | D. | $\frac{5π}{6}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | (-1,3) | B. | (-1,3] | C. | (1,3) | D. | (1,3] |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com