分析 (1)设公差为d,则得到$\left\{\begin{array}{l}{a_3}={a_1}+2d=8\\{a_6}={a_1}+5d=17\end{array}\right.$解得即可,
(2)由(1)求出an的通项公式,得到bn的通项公式,根据等差数列和等比数列的求和公式计算即可.
解答 解:(1)由$\left\{\begin{array}{l}{a_3}={a_1}+2d=8\\{a_6}={a_1}+5d=17\end{array}\right.$可解得:a1=2,d=3.
(2)由(1)可得an=3n-1,
所以${b_n}=3n-1+{2^{n-1}}$,
所以 ${S_n}=\frac{n[2+(3n-1)]}{2}+\frac{{1-{2^n}}}{1-2}=\frac{{3{n^2}+n}}{2}+{2^n}-1$
点评 本题考查了等差数列和等比数列的求和公式,属于基础题.
科目:高中数学 来源: 题型:选择题
| A. | $\frac{{2\sqrt{2}}}{5}$ | B. | $\frac{{\sqrt{7}}}{5}$ | C. | $\frac{{2\sqrt{5}}}{5}$ | D. | $\frac{{\sqrt{10}}}{5}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 若l∥α,l∥β,则 α∥β | B. | 若l∥α,l⊥β,则α⊥β | ||
| C. | 若α⊥β,l⊥α,则 l⊥β | D. | 若α⊥β,l∥α,则l⊥β |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | $\frac{27}{190}$ | B. | $\frac{12}{166}$ | C. | $\frac{15}{166}$ | D. | $\frac{27}{166}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com