精英家教网 > 高中数学 > 题目详情
8.a=$\frac{3}{4}$×$\frac{5}{6}$×$\frac{7}{8}$×…×$\frac{19999}{20000}$与0.01相比较,谁大.

分析 由$\frac{3}{4}$<$\frac{4}{5}$,$\frac{5}{6}$<$\frac{6}{7}$,…,$\frac{19999}{20000}$<$\frac{20000}{20001}$,化简即可得出.

解答 解:∵$\frac{3}{4}$<$\frac{4}{5}$,$\frac{5}{6}$<$\frac{6}{7}$,…,$\frac{19999}{20000}$<$\frac{20000}{20001}$,
∴a=$\frac{3}{4}$×$\frac{5}{6}$×$\frac{7}{8}$×…×$\frac{19999}{20000}$<$\frac{4}{5}$•$\frac{6}{7}$•…•$\frac{20000}{20001}$=$3×\frac{4}{3}$×$\frac{6}{5}$×…×$\frac{20000}{19999}$×$\frac{1}{20001}$,∴a2<$\frac{1}{\frac{20001}{3}}$,
∴a<0.01.

点评 本题考查了不等式的性质、数的大小比较,考查了推理能力与计算能力,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

18.将“NanKai”的6个字母分别写在6张不同的卡片上,任取4张卡片,使得4张卡片上的字母能组成“aiNK”的概率为(  )
A.$\frac{2}{3}$B.$\frac{4}{15}$C.$\frac{2}{15}$D.$\frac{1}{15}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

19.已知平面向量$\overrightarrow{a}$=(1,x),$\overrightarrow{b}$=(2x+3,-x)(x∈R).
(1)若$\overrightarrow{a}$∥$\overrightarrow{b}$,求|$\overrightarrow{a}$-$\overrightarrow{b}$|
(2)若$\overrightarrow{a}$与$\overrightarrow{b}$夹角为锐角,求x的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

16.已知等差数列{an}中,a3=8,a6=17.
(1)求a1,d;
(2)设bn=an+2n-1,求数列{bn}的前n项和Sn

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.若二次函数f(x)=-x2-2x+c的最大值为4.求:
(1)f(c)的值;
(2)抛物线在x轴上方对应的自变量x的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

3.设函数f(x)在R上存在导函数f′(x),对任意x∈R,都有f(x)+f(-x)=x2,且x∈(0,+∞)时,f′(x)>x,若f(2-a)-f(a)≥2-2a2,则实数a的取值范围是(  )
A.[1,+∞)B.(-∞,1]C.(-∞,2]D.[2,+∞)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

10.已知函数f(x)=kx,g(x)=2lnx+2e($\frac{1}{e}$≤x≤e2),若f(x)与g(x)的图象上分别存在点M,N,使得M,N关于直线y=e对称,则实数k的取值范围是(  )
A.[-$\frac{2}{e}$,-$\frac{4}{{e}^{2}}$]B.[-$\frac{2}{e}$,2e]C.[-$\frac{4}{{e}^{2}}$,2e]D.[$\frac{4}{{e}^{2}}$,+∞)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.2015年7月9日21时15分,台风“莲花”在我国广东省陆丰市甲东镇沿海登陆,给当地人民造成了巨大的财产损失,适逢暑假,小张调查了当地某小区的100户居民由于台风造成的经济损失,将收集的数据分成[0,2000],(2000,4000],(4000,6000],(6000,8000],(8000,10000]五组,并作出如图频率分布直方图(图1):

(Ⅰ)台风后居委会号召小区居民为台风重灾区捐款,小张调查的100户居民捐款情况如表格,在表格空白处填写正确数字,并说明是否有95%以上的把握认为捐款数额多于或少于500元和自身经济损失是否到4000元有关?
(Ⅱ)将上述调查所得到的频率视为概率.现在从该地区大量受灾居民中,采用随机抽样方法每次抽取1户居民,抽取3次,记被抽取的3户居民中自身经济损失超过4000元的人数为ξ.若每次抽取的结果是相互独立的,求ξ的分布列,期望E(ξ)和方差D(ξ).
经济损失不超过
4000元
经济损失超过
4000元
合计
捐款超过
500元
60
捐款不超
过500元
10
合计
附:临界值表
P(K2≥k)0.100.050.025
    k2.7063.8415.024
随机量变${K^2}=\frac{{(a+b+c+d){{(ad-bc)}^2}}}{(a+b)(c+d)(a+c)(b+d)}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

8.如图,在△ABC中,点D在边BC上,∠CAD=$\frac{π}{4}$,AC=$\frac{7}{2}$,cos∠ADB=-$\frac{{\sqrt{2}}}{10}$.若△ABD的面积为7,则AB=$\sqrt{37}$.

查看答案和解析>>

同步练习册答案