精英家教网 > 高中数学 > 题目详情
19.某中学对男女学生是否喜爱古典音乐进行了一个调查,调查者对学校高三年级随机抽取了100名学生,调查结果如表:
喜爱不喜爱总计
男学生6080
女学生
总计7030
(1)完成如表,并根据表中数据,判断是否有95%的把握认为“男学生和女学生喜欢古典音乐的程度有差异”;
(2)从以上被调查的学生中以性别为依据采用分层抽样的方式抽取10名学生,再从这10名学生中随机抽取5名学生去某古典音乐会的现场观看演出,求正好有X个男生去观看演出的分布列及期望.
附:K2=$\frac{n(ad-bc)^{2}}{(a+b)(c+d)(a+c)(b+d)}$
P(K2≥k00.1000.0500.010
k02.7063.8416.635

分析 (1)列出2×2列联表,求出K2的值,判断有95%的把握认为“男学生和女学生喜欢古典音乐的程度有差异”;
(2)先确定X的取值,分别求其概率,求出分布列和数学期望.

解答 解:(1)2×2列联表

喜爱不喜爱总计
男学生602080
女学生101020
总计7030100
∴K2=$\frac{100×(60×10-20×10)^{2}}{70×30×80×20}$=$\frac{100}{21}$≈4.762>3.841,
∴有95%的把握认为“男学生和女学生喜欢古典音乐的程度有差异”;
(2)由题意,10名学生中有8名男生和2名女生,故X的取值为3,4,5.
P(X=3)=$\frac{{C}_{8}^{3}{C}_{2}^{2}}{{C}_{10}^{5}}$=$\frac{2}{9}$,P(X=4)=$\frac{{C}_{8}^{4}{C}_{2}^{1}}{{C}_{10}^{5}}$=$\frac{5}{9}$,P(X=5)=$\frac{{C}_{8}^{5}{C}_{2}^{0}}{{C}_{10}^{5}}$=$\frac{2}{9}$,
X的分布列
 X 3 4 5
 P $\frac{2}{9}$ $\frac{5}{9}$ $\frac{2}{9}$
期望EX=3×$\frac{2}{9}$+4×$\frac{5}{9}$+5×$\frac{2}{9}$=4.

点评 本题考查概率的计算,考查独立性检验知识,求X的分布列及数学期望,考查学生的计算能力,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

19.已知平面向量$\overrightarrow{a}$=(1,x),$\overrightarrow{b}$=(2x+3,-x)(x∈R).
(1)若$\overrightarrow{a}$∥$\overrightarrow{b}$,求|$\overrightarrow{a}$-$\overrightarrow{b}$|
(2)若$\overrightarrow{a}$与$\overrightarrow{b}$夹角为锐角,求x的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

10.已知函数f(x)=kx,g(x)=2lnx+2e($\frac{1}{e}$≤x≤e2),若f(x)与g(x)的图象上分别存在点M,N,使得M,N关于直线y=e对称,则实数k的取值范围是(  )
A.[-$\frac{2}{e}$,-$\frac{4}{{e}^{2}}$]B.[-$\frac{2}{e}$,2e]C.[-$\frac{4}{{e}^{2}}$,2e]D.[$\frac{4}{{e}^{2}}$,+∞)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.2015年7月9日21时15分,台风“莲花”在我国广东省陆丰市甲东镇沿海登陆,给当地人民造成了巨大的财产损失,适逢暑假,小张调查了当地某小区的100户居民由于台风造成的经济损失,将收集的数据分成[0,2000],(2000,4000],(4000,6000],(6000,8000],(8000,10000]五组,并作出如图频率分布直方图(图1):

(Ⅰ)台风后居委会号召小区居民为台风重灾区捐款,小张调查的100户居民捐款情况如表格,在表格空白处填写正确数字,并说明是否有95%以上的把握认为捐款数额多于或少于500元和自身经济损失是否到4000元有关?
(Ⅱ)将上述调查所得到的频率视为概率.现在从该地区大量受灾居民中,采用随机抽样方法每次抽取1户居民,抽取3次,记被抽取的3户居民中自身经济损失超过4000元的人数为ξ.若每次抽取的结果是相互独立的,求ξ的分布列,期望E(ξ)和方差D(ξ).
经济损失不超过
4000元
经济损失超过
4000元
合计
捐款超过
500元
60
捐款不超
过500元
10
合计
附:临界值表
P(K2≥k)0.100.050.025
    k2.7063.8415.024
随机量变${K^2}=\frac{{(a+b+c+d){{(ad-bc)}^2}}}{(a+b)(c+d)(a+c)(b+d)}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.如图,AB是圆O的直径,点C在圆O上,矩形DCBE所在的平面垂直于圆O所在的平面,AB=4,BE=1.
(1)证明:平面ADE⊥平面ACD;
(2)当三棱锥C-ADE的体积最大时,求直线CE与平面ADE所成角的正弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.如图,长方形ABCD,M,N分别为AB,AD上异于点A的两点,现把△AMN沿着MN翻折,记AC与平面BCD所成的角为θ1,直线AC与直线MN所成的角为θ2,则θ1与θ2的大小关系是(  )
A.θ12B.θ1>θ2C.θ1<θ2D.不能确定

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.已知函数f(x)=log2$\frac{2x-1}{x+2}$.
(1)求f(x)的定义域A;
(2)若函数g(x)=3x2+6x+2在[-1,a](a>-1)内的值域为B,且A∩B=∅,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

8.如图,在△ABC中,点D在边BC上,∠CAD=$\frac{π}{4}$,AC=$\frac{7}{2}$,cos∠ADB=-$\frac{{\sqrt{2}}}{10}$.若△ABD的面积为7,则AB=$\sqrt{37}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

9.已知P是抛物线M:y2=4x上的任意点,过点P作圆C:(x-3)2+y2=1的两条切线,切点分别为A,B,连CA,CB,则四边形PACB的面积最小值时,点 P的坐标为(1,2)或(1,-2).

查看答案和解析>>

同步练习册答案