精英家教网 > 高中数学 > 题目详情
19.已知四面体ABCD中,E,F分别是AC,BD的中点,若AB=6,CD=10,EF=7,则AB与CD所成角的度数为(  )
A.120°B.45°C.60°D.90°

分析 取AD中点G,连结EG、FG,则∠EGF是AB与CD所成角(或所成角的补角),由此利用余弦定理能求出AB与CD所成角的度数.

解答 解:取AD中点G,连结EG、FG,
∵四面体ABCD中,E,F分别是AC,BD的中点,AB=6,CD=10,EF=7,
∴GF∥AB,且GF=$\frac{1}{2}AB=3$,
GE∥CD,且GE=$\frac{1}{2}CD$=5,
∴∠EGF是AB与CD所成角(或所成角的补角),
∵cos∠EGF=$\frac{G{F}^{2}+G{E}^{2}-E{F}^{2}}{2×GF×GE}$=$\frac{9+25-49}{2×3×5}$=-$\frac{1}{2}$,
∴∠EGF=120°,
∴AB与CD所成角的度数为60°.
故选:C.

点评 本题考查异面直线所成角的大小的求法,考查空间中线线、线面、面在面间的位置关系的合理运用,考查推理论证能力、运算求解能力、空间想象能力,考查化归与转化思想、函数与方程思想、数形结合思想,是中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

9.二面角α-l-β为60°,异面直线a、b分别垂直于α、β,则a与b所成角的大小是60°.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

10.祖暅著《缀术》有云:“缘幂势既同,则积不容异”,这就是著名的祖暅原理,如图1,现有一个半径为R的实心球,以该球某条直径为中心轴挖去一个半径为r的圆柱形的孔,再将余下部分熔铸成一个新的实心球,则新实心球的半径为$\root{3}{\frac{2{R}^{3}-3{r}^{2}\sqrt{{R}^{2}-{r}^{2}}}{2}}$(如图2,势为h时幂为S=π(R2-r2-h2))

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.已知以点$C(t,\frac{2}{t})(t∈R且t≠0)$为圆心的圆经过原点O,且与x轴交于点A,与y轴交于点B.
(1)求证:△AOB的面积为定值.
(2)设直线2x+y-4=0与圆C交于点M,N,若|OM|=|ON|,求圆C的方程.
(3)当t>0时,在(2)的条件下,设P,Q分别是直线l:x+y+2=0和圆C上的动点,求|PB|+|PQ|的最小值及此时点P的坐标.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.在平面直角坐标系中,直线l的参数方程为$\left\{\begin{array}{l}x=t+1\\ y=\sqrt{3}t+1\end{array}\right.$(t为参数),以坐标原点为极点,x轴正半轴为极轴建立极坐标系,曲线C的极坐标方程为3ρ2cos2θ+4ρ2sin2θ=12.
(Ⅰ)写出直线l的极坐标方程与曲线C的直角坐标方程;
(Ⅱ)已知与直线l平行的直线l'过点M(1,0),且与曲线C交于A,B两点,试求|AB|.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

4.已知函数f(x)是定义在R上的奇函数,f(1)=0,$\frac{xf'(x)+f(x)}{x^2}>0$(x>0),则不等式x2f(x)>0的解集是(-1,0)∪(1,+∞).

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.设偶函数f(x)=$cos(\frac{π}{ω}x-φ)$,其中ω>0,0≤φ<2π.
(1)求φ的值;
(2)若函数f(x)在(0,3)上单调递减,当ω取得最小值时,求f(1)+f(2)+…+f(2017)的值;
(3)在(2)的条件下,若g(x)=-2f2(x-$\frac{3}{2}$)-f(x+$\frac{3}{2}$),且对任意的x1,x2∈[-$\frac{3}{2π}$,$\frac{11}{2π}$],8|g(x1)-g(x2)|≤$\sqrt{3}$m+3恒成立,求m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

8.已知两条直线m,n和两个平面α,β,下面给出四个命题中:
①α∩β=m,n?α⇒m∥n或m与n相交;
②α∥β,m?α,n?β⇒m∥n;
③m∥n,m∥α⇒n∥α;
④α∩β=m,m∥n⇒n∥β且n∥α.其中正确命题的序号是①.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.已知数列{an}的前n项和为Sn,且满足Sn+n=2an(n∈N*).
(1)证明:数列{an+1}为等比数列,并求数列{an}的通项公式;
(2)若bn=an+2n+1,数列{bn}的前n项和为Tn

查看答案和解析>>

同步练习册答案