精英家教网 > 高中数学 > 题目详情
已知正方体ABCD-A1B1C1D1中,线段B1A1,B1C1上(不包括端点)各有一点P,Q,且B1P=B1Q,下列说法中,不正确的是(  )
A、A,C,P,Q四点共面
B、直线PQ与平面BCC1B1所成的角为定值
C、
π
3
<∠PAC<
π
2
D、设二面角P-AC-B的大小为θ,则tanθ的最小值为
2
分析:利用平面的基本性质判断A的正误;直线与平面所成角判断B是正误;通过特例判断C的正误;通过二面角的大小求解判断D的正误.
解答:精英家教网解:正方体ABCD-A1B1C1D1中,线段B1A1,B1C1上(不包括端点)各有一点P,Q,且B1P=B1Q,如图:
当PQ连线与AC平行时,A,C,P,Q四点共面,
∴A不正确;
直线PQ与平面BCC1B1所成的角为定值,显然不正确,P在平面BCC1B1的射影是B1,Q如果是定点,直线PQ与平面BCC1B1所成的角为变值,∴B不正确;
对于C,当P在A1B1 的中点时,不妨设作法的棱长为2,cos∠PAC=
5+5-(2
3
)2
2•
5
5
<0,∠PAC是钝角,∴
π
3
<∠PAC<
π
2
不正确;
对于D,作PE⊥AB于E,过E作EF⊥AC于F,θ=∠PFE,则tanθ的最小值时EF最大,此时P在B1,tanθ=
2

∴D正确.
故选:D.精英家教网
点评:本题考查正方体中的直线与平面的位置关系,二面角的求法,考查空间想象能力以及计算能力.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

如图,已知正方体ABCD-A1B1C1D1的棱长为2,点P在平面DD1C1C内,PD1=PC1=
2
.求证:
(1)平面PD1A1⊥平面D1A1BC;
(2)PC1∥平面A1BD.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知正方体ABCD-A1B1C1D1中,E、F分别为BB1、CC1的中点,那么直线AE与D1F所成角的余弦值为(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

已知正方体ABCD-A1B1C1D1中,E为棱CC1的动点.
(1)当E恰为棱CC1的中点时,试证明:平面A1BD⊥平面EBD;
(2)在棱CC1上是否存在一个点E,可以使二面角A1-BD-E的大小为45°?如果存在,试确定点E在棱CC1上的位置;如果不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知正方体ABCD-A1B1C1D1,则四面体A1-C1BD在面A1B1C1D1上的正投影的面积与该四面体表面积之比是
3
6
3
6

查看答案和解析>>

科目:高中数学 来源: 题型:

精英家教网已知正方体ABCD-A1B1C1D1,O是底ABCD对角线的交点.
(1)求证:C1O∥面AB1D1
(2)求异面直线AD1与 C1O所成角的大小.

查看答案和解析>>

同步练习册答案