¸ø¶¨ÕýÕûÊýk¡Ý3£¬ÈôÏîÊýΪkµÄÊýÁÐ{an}Âú×㣺¶ÔÈÎÒâµÄi=1¡¢2¡¢¡­¡¢k£¬¾ùÓÐai¡Ü
Sk
k-1
£¨ÆäÖÐSk=a1+a2+¡­+ak£©£¬Ôò³ÆÊýÁÐ{an}Ϊ¡°¦£ÊýÁС±£®
£¨¢ñ£©ÅжÏÊýÁÐ-1£¬3£¬5£¬2£¬4ºÍ
3
4
£¬
32
42
£¬
33
43
ÊÇ·ñÊÇ¡°¦£ÊýÁС±£¬²¢ËµÃ÷ÀíÓÉ£»
£¨¢ò£©Èô{an}Ϊ¡°¦£ÊýÁС±£¬ÇóÖ¤£ºai¡Ý0¶Ôi=1£¬2£¬¡­£¬kºã³ÉÁ¢£»
£¨¢ó£©Éè{bn}Êǹ«²îΪdµÄÎÞÇîÏîµÈ²îÊýÁУ¬Èô¶ÔÈÎÒâµÄÕýÕûÊým¡Ý3£¬b1£¬b2£¬¡­£¬bm¾ù¹¹³É¡°¦£ÊýÁС±£¬Çó{bn}µÄ¹«²îd£®
¿¼µã£ºÊýÁеÄÇóºÍ
רÌ⣺µÈ²îÊýÁÐÓëµÈ±ÈÊýÁÐ
·ÖÎö£º£¨¢ñ£©¸ù¾Ý¡°¦£ÊýÁС±µÄ¶¨Ò壬¼´¿ÉÅжÏÊýÁÐ-1£¬3£¬5£¬2£¬4ºÍ
3
4
£¬
32
42
£¬
33
43
ÊÇ·ñÊÇ¡°¦£ÊýÁС±£¬
£¨¢ò£©Èô{an}Ϊ¡°¦£ÊýÁС±£¬ÀûÓ÷´Ö¤·¨¼´¿ÉÖ¤Ã÷£ºai¡Ý0¶Ôi=1£¬2£¬¡­£¬kºã³ÉÁ¢£»
£¨¢ó£©
½â´ð£º ½â£º£¨¢ñ£©¢ÙÒòΪ
S5
5-1
=
13
4
£¼5
£¬ÊýÁÐ-1£¬3£¬5£¬2£¬4²»ÊÇ¡°¦£ÊýÁУ¬
¢ÚÒòΪ
S3
3-1
=
111
128
£¾
3
4
£¬ÓÖ
3
4
ÊÇÊýÁÐ
3
4
£¬
32
42
£¬
33
43
ÖеÄ×î´óÏî
ËùÒÔÊýÁÐ
3
4
£¬
32
42
£¬
33
43
ÊÇ¡°¦£ÊýÁС±£®
£¨¢ò£©·´Ö¤·¨Ö¤Ã÷£º
¼ÙÉè´æÔÚijÏîai£¼0£¬Ôò
a1+a2+¡­+ai-1+ai+1+¡­+ak-1+ak=Sk-ai£¾Sk£®
Éèaj=max{a1£¬a2£¬¡­ai-1£¬ai+i¡­£¬ak-1+ak}£¬
ÔòSk-ai=a1+a2+¡­+ai-1+ai+1+¡­+ak-1+ak¡Ü£¨k-1£©aj£¬
ËùÒÔ£¨k-1£©aj£¾Sk£¬¼´aj£¾
Sk
k-1
£¬
ÕâÓë¡°¦£ÊýÁС±¶¨Òåì¶Ü£¬ËùÒÔÔ­½áÂÛÕýÈ·£®
£¨¢ó£©ÓÉ£¨¢ò£©ÎÊ¿ÉÖªb1¡Ý0£¬d¡Ý0£®
¢Ùµ±d=0ʱ£¬b1=b2=¡­=bm=
Sm
m
£¼
Sm
m-1
£¬·ûºÏÌâÉ裻
¢Úµ±d£¾0ʱ£¬b1£¼b2£¼¡­£¼bm£¬
ÓÉ¡°¦£ÊýÁС±µÄ¶¨Òå¿ÉÖªbm¡Ü
Sm
m-1
£¬¼´£¨m-1£©[b1+£¨m-1£©d]¡Ümb1+
1
2
m£¨m-1£©d£¬
ÕûÀíµÃ£¨m-1£©£¨m-2£©d¡Ü2b1£¨*£©
ÏÔÈ»µ±m=2b1+3ʱ£¬ÉÏÊö²»µÈʽ£¨*£©¾Í²»³ÉÁ¢
ËùÒÔd£¾0ʱ£¬¶ÔÈÎÒâÕýÕûÊým¡Ý3£¬£¨m-1£©£¨m-2£©d¡Ü2b1²»¿ÉÄܶ¼³ÉÁ¢£®
×ÛÉÏÌÖÂÛ¿ÉÖª{bn}µÄ¹«²îd=0£®
µãÆÀ£º±¾ÌâÖ÷Òª¿¼²éÊýÁÐж¨ÒåµÄÓ¦Óã¬ÕýÈ·Àí½â¡°¦£ÊýÁС±µÄ¶¨ÒåÊǽâ¾ö±¾ÌâµÄ¹Ø¼ü£®×ÛºÏÐÔ½ÏÇ¿£¬ÓÐÒ»¶¨µÄÄѶȣ®
Á·Ï°²áϵÁдð°¸
Ïà¹ØÏ°Ìâ

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º

Èçͼ£¬ÒÑÖªÕý·½ÌåABCD-A1B1C1D1µÄÀⳤΪ2£¬MΪÕý·½ÐÎAA1D1DµÄÖÐÐÄ£¬NΪÀâABµÄÖе㣮
£¨¢ñ£©ÇóÖ¤£ºMN¡ÎÆ½ÃæBB1D1D£»
£¨¢ò£©ÇóËÄÀâ×¶N-BB1D1DµÄÌå»ý£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º

Èçͼ£¬ÍÖÔ²C£º
x2
a2
+
y2
b2
=1£¨a£¾b£¾0£©µÄÀëÐÄÂÊe=
1
2
£¬¶ÌÖáµÄÁ½¸ö¶Ëµã·Ö±ðΪB1¡¢B2£¬½¹µãΪF1¡¢F2£¬ËıßÐÎF1B1F2B2µÄÄÚÇÐÔ²°ë¾¶Îª
3
2
£®
£¨1£©ÇóÍÖÔ²CµÄ·½³Ì£»
£¨2£©¹ý×ó½¹F1µãµÄÖ±Ïß½»ÍÖÔ²ÓÚM¡¢NÁ½µã£¬½»Ö±Ïßx=-4ÓÚµãP£¬Éè
PM
=¦Ë
MF1
£¬
PN
=¦Ì
NF2
£¬ÊÔÖ¤¦Ë+¦ÌΪ¶¨Öµ£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º

Èçͼ£¬ÒÑÖª¶àÃæÌåEABCDFµÄµ×ÃæABCDÊDZ߳¤Îª2µÄÕý·½ÐΣ¬EA¡Íµ×ÃæABCD£¬FD¡ÎEA£¬ÇÒFD=
1
2
EA=1£®
£¨¢ñ£©Çó¶àÃæÌåEABCDFµÄÌå»ý£»
£¨¢ò£©ÇóÖ¤£ºÆ½ÃæEAB¡ÍÆ½ÃæEBC£»
£¨¢ó£©¼ÇÏß¶ÎCBµÄÖеãΪK£¬ÔÚÆ½ÃæABCDÄÚ¹ýKµã×÷Ò»ÌõÖ±ÏßÓëÆ½ÃæECFƽÐУ¬ÒªÇó±£Áô×÷ͼºÛ¼££¬µ«²»ÒªÇóÖ¤Ã÷£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º

ÒÑÖªº¯Êýy=x-
x2-1
£¬Çó¸Ãº¯ÊýµÄ×î´óÖµ£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º

ÒÑÖª¡ÏAµÄÖÕ±ßÉÏÓÐÒ»µãP£¨x£¬-1£©£¬ÇÒtanA=-x£¬ÇósinA+cosAµÄÖµ£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º

Èçͼ£¬ÈýÀâÖùABC-A1B1C1µÄ²àÀâAA1¡ÍÆ½ÃæABC£¬¡÷ABCΪµÈ±ßÈý½ÇÐΣ¬²àÃæAA1C1CÊÇÕý·½ÐΣ¬EÊÇA1BµÄÖе㣬FÊÇÀâCC1Éϵĵ㣮
£¨1£©ÈôFÊÇÀâCC1Öеãʱ£¬ÇóÖ¤£ºAE¡ÍÆ½ÃæA1FB£»
£¨2£©µ±VE-ABF=9
3
ʱ£¬ÇóÕý·½ÐÎAA1C1CµÄ±ß³¤£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º

ÒÑÖªtan
¦Á
2
=
1
3
£¬Ôòcos¦Á=
 
£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º

ÒÑÖªcos£¨¦Ð-¦Á£©=-
1
2
£¬
3¦Ð
2
£¼¦Á£¼2¦Ð£¬Ôòsin£¨2¦Ð-¦Á£©=
 
£®

²é¿´´ð°¸ºÍ½âÎö>>

ͬ²½Á·Ï°²á´ð°¸