精英家教网 > 高中数学 > 题目详情
17.已知不等式x2+mx+3≤0的解集为A=[1,n],集合B={x|x2-ax+a≤0}.
(1)求m-n的值;
(2)若A∪B=A,求a的取值范围.

分析 (1)利用韦达定理,求出m,n,即可求m-n的值;
(2)若A∪B=A,B⊆A,分类讨论求a的取值范围.

解答 解:(1)∵不等式x2+mx+3≤0的解集为A=[1,n],
∴$\left\{\begin{array}{l}{1+n=-m}\\{1•n=3}\end{array}\right.$,∴m=-4,n=3,
∴m-n=-7;
(2)A∪B=A,∴B⊆A.
①B=∅,△=a2-4a<0,∴0<a<4;
②B≠∅,设f(x)=x2-ax+a,则$\left\{\begin{array}{l}{△≥0}\\{1≤\frac{a}{2}≤3}\\{f(1)=1≥0}\\{f(3)=9-2a≥0}\end{array}\right.$,∴4≤a≤$\frac{9}{2}$,
综上所述,0<a≤$\frac{9}{2}$.

点评 本题考查集合的关系,考查分类讨论的数学思想,熟练掌握一元二次不等式的解集与相应的一元二次方程的根的关系是解题的关键.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

11.已知不等式$\frac{ax}{x-1}<1$的解集为{x|x<1,或x>3},则a=(  )
A.1B.$\frac{2}{3}$C.$\frac{1}{2}$D.4

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.已知公差不为零的等差数列{an}的前n项和为Sn,且a5+S7=74,a4是a1和a13的等比中项.
(1)求数列{an}的通项公式;
(2)设{$\frac{{b}_{n}}{{a}_{n}}$}是首项和公比均为3的等比数列,求数列{bn}的前n项和Tn

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.设命题p:不等式x+x2≥a对x≥0恒成立,命题q:关于x的方程x2-2x-a=0在R上有解,若“p∧q”为假命题,“p∨q”为真命题,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

12.奇函数f(x)在(0,+∞)内单调递增且f(2)=0,则不等式$\frac{f(x)}{x-1}>0$的解集为(  )
A.(-∞,-2)∪(0,1)∪(1,2)B.(-2,0)∪(1,2)C.(-∞,-2)∪(2,+∞)D.(-∞,-2)∪(0,1)∪(2,+∞)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

2.某几何体的三视图如图所示,则该几何体的体积的最大值为(  )
A.$\frac{1}{2}$B.$\frac{1}{4}$C.$\frac{3}{2}$D.$\frac{3}{4}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

9.在数列{xn}中,若x1=1,xn+1=$\frac{1}{{{x_n}+1}}$-1,则x2015=(  )
A.-1B.$-\frac{1}{2}$C.$\frac{1}{2}$D.1

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

6.在△ABC中,角A、B、C所对的边分别为a、b、c,且满足1+cosA=$\frac{{\sqrt{3}}}{3}$sinA,sin(B+C)=6cosBsinC,则$\frac{b}{c}$的值为(  )
A.$1+\sqrt{6}$B.$1+2\sqrt{2}$C.$1+3\sqrt{2}$D.$1+3\sqrt{3}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

7.已知{an}是等差数列,a1=2,公差d≠0,Sn为其前n项和,若a1、a2、a5成等比数列,则S5=50.

查看答案和解析>>

同步练习册答案