分析 分别求出p,q为真时的a的范围,根据“p∧q”为假命题,“p∨q”为真命题,得到p,q一真一假,得到关于a的不等式组,解出即可.
解答 解:若不等式x+x2≥a对x≥0恒成立,
故a≤0,
故p为真时:a≤0,
若关于x的方程x2-2x-a=0在R上有解,
则a=x2-2x=(x-1)2-1≥-1,
故q为真时,a≥-1,
若“p∧q”为假命题,“p∨q”为真命题,
则p,q一真一假,
则$\left\{\begin{array}{l}{a≤0}\\{a<-1}\end{array}\right.$或$\left\{\begin{array}{l}{a>0}\\{a≥-1}\end{array}\right.$,
故a<-1或a>0.
点评 本题考查了复合命题的判断,考查二次函数的性质,是一道中档题.
科目:高中数学 来源: 题型:解答题
| t | 0 | 3 | 6 | 9 | 12 | 15 | 18 | 21 | 24 |
| y/元 | 10.0 | 13.0 | 9.9 | 7.0 | 10.0 | 13.0 | 10.01 | 7.0 | 10.0 |
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | [$\frac{9}{2}$,+∞) | B. | (-∞,3] | C. | (3,$\frac{9}{2}$) | D. | (0,3) |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 1 | B. | 2 | C. | 3 | D. | 4 |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | a≤1 | B. | a≥1 | C. | a≤2 | D. | a≥2 |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | $\frac{1}{2}$ | B. | 0 | C. | 1 | D. | 2 |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com