精英家教网 > 高中数学 > 题目详情
若a,b∈R+,且满足ab=a+b+3,则a+b的取值范围为
[6,+∞)
[6,+∞)
分析:利用基本不等式和一元二次不等式的解法即可得出.
解答:解:∵a,b∈R+,∴a+b+3=ab≤(
a+b
2
)2

令a+b=t>0,则上式化为t2-4t-12≥0,∴(t-6)(t+2)≥0,∴t≥6.
∴a+b的取值范围为[6,+∞).
故答案为[6,+∞).
点评:熟练掌握基本不等式和一元二次不等式的解法是解题的关键.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知函数f(x)为R上的连续函数且存在反函数f-1(x),若函数f(x)满足下表:
精英家教网
那么,不等式|f-1(x-1)|<2的解集是(  )
A、{x|
5
2
<x<4}
B、{x|
3
2
<x<3}
C、{x|1<x<2}
D、{x|1<x<5}

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数g(x)=ax3+bx2+cx(a∈R且a≠0),g(-1)=0,且g(x)的导函数f(x)满足以f(0)f(1)≤0.若方程f(x)=0有两个实根,则
b
a
的取值范围为(  )

查看答案和解析>>

科目:高中数学 来源:2012届度辽宁省沈阳市高三数学质量检测试卷 题型:选择题

若f(x)是R上周期为5的奇函数,且满 足f(1)=1,f(2)=2,则f(8)-f(4)=    (    ) 

A.-1          B.1          C.-2           D. 2

 

查看答案和解析>>

科目:高中数学 来源:2010年福建省高一上学期期中考试数学卷 题型:解答题

(本小题满10分)注意:第(3)小题平行班学生不必做,特保班学生必须做。对于函数,若存在x0∈R,使成立,则称x0的不动点。已知函数a≠0)。

(1)当时,求函数的不动点;

(2)若对任意实数b,函数恒有两个相异的不动点,求a的取值范围;

(3)(特保班做) 在(2)的条件下,若图象上AB两点的横坐标是函数的不动点,且AB两点关于点对称,求的的最小值。

 

查看答案和解析>>

科目:高中数学 来源: 题型:

(本小题满10分)注意:第(3)小题平行班学生不必做,特保班学生必须做。

对于函数,若存在x0∈R,使成立,则称x0的不动点。

已知函数a≠0)。

(1)当时,求函数的不动点;

(2)若对任意实数b,函数恒有两个相异的不动点,求a的取值范围;

(3)(特保班做) 在(2)的条件下,若图象上AB两点的横坐标是函数的不动点,且AB两点关于点对称,求的的最小值。

查看答案和解析>>

同步练习册答案