【题目】如图,在四棱柱
中,底面
为菱形,
.
![]()
(1)证明:平面
平面
;
(2)若
,
是等边三角形,求二面角
的余弦值.
【答案】(1)证明见解析(2)![]()
【解析】
(1)根据面面垂直的判定定理可知,只需证明
平面
即可.
由
为菱形可得
,连接
和
与
的交点
,
由等腰三角形性质可得
,即能证得
平面
;
(2)由题意知,
平面
,可建立空间直角坐标系
,以
为坐标原点,
所在直线为
轴,
所在直线为
轴,
所在直线为
轴,再分别求出平面
的法向量,平面
的法向量,即可根据向量法求出二面角
的余弦值.
(1)如图,设
与
相交于点
,连接
,
![]()
又
为菱形,故
,
为
的中点.
又
,故
.
又
平面
,
平面
,且
,
故
平面
,又
平面
,
所以平面
平面
.
(2)由
是等边三角形,可得
,故
平面
,
所以
,
,
两两垂直.如图以
为坐标原点,
所在直线为
轴,
所在直线为
轴,
所在直线为
轴,建立空间直角坐标系
.
![]()
不妨设
,则
,
,
则
,
,
,
,
,
,
设
为平面
的法向量,
则
即
可取
,
设
为平面
的法向量,
则
即
可取
,
所以
.
所以二面角
的余弦值为0.
科目:高中数学 来源: 题型:
【题目】已知圆
,圆
,动圆
与圆
外切并与圆
内切,圆心
的轨迹为曲线
.
(1)求
的方程;
(2)若直线
与曲线
交于
两点,问是否在
轴上存在一点
,使得当
变动时总有
?若存在,请说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】在直角坐标系
中,以坐标原点为极点,
轴正半轴为极轴建立极坐标系,曲线
的参数方程为
(
为参数),直线
经过点
且倾斜角为
.
(1)求曲线
的极坐标方程和直线
的参数方程;
(2)已知直线
与曲线
交于
,满足
为
的中点,求
.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】2019年末,武汉出现新型冠状病毒肺炎(
)疫情,并快速席卷我国其他地区,传播速度很快.因这种病毒是以前从未在人体中发现的冠状病毒新毒株,所以目前没有特异治疗方法,防控难度很大.武汉市出现疫情最早,感染人员最多,防控压力最大,武汉市从2月7日起举全市之力入户上门排查确诊的新冠肺炎患者、疑似的新冠肺炎患者、无法明确排除新冠肺炎的发热患者和与确诊患者的密切接触者等“四类”人员,强化网格化管理,不落一户、不漏一人.在排查期间,一户6口之家被确认为“与确诊患者的密切接触者”,这种情况下医护人员要对其家庭成员随机地逐一进行“核糖核酸”检测,若出现阳性,则该家庭为“感染高危户”.设该家庭每个成员检测呈阳性的概率均为
(
)且相互独立,该家庭至少检测了5个人才能确定为“感染高危户”的概率为
,当
时,
最大,则
( )
A.
B.
C.
D.![]()
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】全国大学生机器人大赛是由共青团中央,全国学联,深圳市人民政府联合主办的赛事,是中国最具影响力的机器人项目,是全球独创的机器人竞技平台.全国大学生机器人大赛比拼的是参赛选手们的能力,坚持和态度,展现的是个人实力以及整个团队的力量.2015赛季共吸引全国240余支机器人战队踊跃报名,这些参赛战队来自全国六大赛区,150余所高等院校,其中不乏北京大学,清华大学,上海交大,中国科大,西安交大等众多国内顶尖高校,经过严格筛选,最终由111支机器人战队参与到2015年全国大学生机器人大赛的激烈角逐之中,某大学共有“机器人”兴趣团队1000个,大一、大二、大三、大四分别有100,200,300,400个,为挑选优秀团队,现用分层抽样的方法,从以上团队中抽取20个团队.
(1)应从大三抽取多少个团队?
(2)将20个团队分为甲、乙两组,每组10个团队,进行理论和实践操作考试(共150分),甲、乙两组的分数如下:
甲:125,141,140,137,122,114,119,139,121,142
乙:127,116,144,127,144,116,140,140,116,140
从甲、乙两组中选一组强化训练,备战机器人大赛.
(i)从统计学数据看,若选择甲组,理由是什么?若选择乙组,理由是什么?
(ii)从乙组中不低于140分的团队中任取两个团队,求至少有一个团队为144分的概率.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】设
、
是椭圆
的左、右顶点,
为椭圆上异于
、
的一点.
(1)
是椭圆
的上顶点,且直线
与直线
垂直,求点
到
轴的距离;
(2)过点
的直线
(不过坐标原点)与椭圆
交于
、
两点,且点
在
轴上方,点
在
轴下方,若
,求直线
的斜率.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com