【题目】设
,函数
,
.
(1)当
时,求函数
的单调区间;
(2)求函数
的极值;
(3)若函数
在区间
上有唯一零点,试求
的值.
【答案】(1)
的减区间为
,增区间为
;(2)
有极大值
,无极小值;(3)
.
【解析】
(1)求出
,解得
或
,则可探究当
时,当
时,
的变化,从而求出单调区间;
(2)求出
,令
,结合导数探究
在
的单调性,结合
,可探究出
随
的变化情况,从而可求极值;
(3)令
,可得
在
只有一个解,借助第二问可知
,从而可求出
的值.
解:(1)当
时,
.易知
的定义域为
,
令
,解得
或
,
当
时,
,则
递减;当
时,
,则
递增,
因此,
的减区间为
,增区间为
.
(2)
的定义域为
,则
,令
,
则
,故
在
单调递减,又知
,
当
时,
,即
;当
时,
,即![]()
因此
在
单调递增,在
单调递减.
即当
时,
有极大值
,无极小值.
(3)令
,整理得:
在
只有一个解,
即
的图像与
的图像在
只有一个交点,由(2)知,
在
单调递增,在
单调递减,且
有极大值
,
所以,
,解得
.
科目:高中数学 来源: 题型:
【题目】如图,在四棱锥
中,底面
是边长为2的正方形,且
,若点E,F分别为AB和CD的中点.
![]()
(1)求证:平面
平面
;
(2)若二面角
的平面角的余弦值为
,求
与平面
所成角的正弦值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某学校需要从甲、乙两名学生中选一人参加数学竞赛,抽取了近期两人
次数学考试的成绩,统计结果如下表:
第一次 | 第二次 | 第三次 | 第四次 | 第五次 | |
甲的成绩(分) |
|
|
|
|
|
乙的成绩(分) |
|
|
|
|
|
(1)若从甲、乙两人中选出一人参加数学竞赛,你认为选谁合适?请说明理由.
(2)若数学竞赛分初赛和复赛,在初赛中有两种答题方案:
方案一:每人从
道备选题中任意抽出
道,若答对,则可参加复赛,否则被淘汰.
方案二:每人从
道备选题中任意抽出
道,若至少答对其中
道,则可参加复赛,否则被润汰.
已知学生甲、乙都只会
道备选题中的
道,那么你推荐的选手选择哪种答题方条进人复赛的可能性更大?并说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】在直角坐标系
中,曲线
的参数方程为
(
为参数),在以坐标原点为极点,
轴的正半轴为极轴的极坐标系中,直线
的极坐标方程为
.
(1)若直线
与曲线
至多只有一个公共点,求实数
的取值范围;
(2)若直线
与曲线
相交于
,
两点,且
,
的中点为
,求点
的轨迹方程.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知数列
满足:对任意的
,若
,则
,且
,设集合
,集合
中元素最小值记为
,集合
中元素最大值记为
.
(1)对于数列:
,写出集合
及
;
(2)求证:
不可能为18;
(3)求
的最大值以及
的最小值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】在直角坐标系xOy中,过点P(1,2)的直线l的参数方程为
为参数).以原点O为极点,x轴正半轴为极轴建立极坐标系,曲线C的极坐标方程为
.
(1)求直线l的普通方程和曲线C的直角坐标方程;
(2)若直线l与曲线C相交于M,N两点,求
的值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】2019年末,武汉出现新型冠状病毒肺炎(
)疫情,并快速席卷我国其他地区,传播速度很快.因这种病毒是以前从未在人体中发现的冠状病毒新毒株,所以目前没有特异治疗方法,防控难度很大.武汉市出现疫情最早,感染人员最多,防控压力最大,武汉市从2月7日起举全市之力入户上门排查确诊的新冠肺炎患者、疑似的新冠肺炎患者、无法明确排除新冠肺炎的发热患者和与确诊患者的密切接触者等“四类”人员,强化网格化管理,不落一户、不漏一人.在排查期间,一户6口之家被确认为“与确诊患者的密切接触者”,这种情况下医护人员要对其家庭成员随机地逐一进行“核糖核酸”检测,若出现阳性,则该家庭为“感染高危户”.设该家庭每个成员检测呈阳性的概率均为
(
)且相互独立,该家庭至少检测了5个人才能确定为“感染高危户”的概率为
,当
时,
最大,则
( )
A.
B.
C.
D.![]()
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com