精英家教网 > 高中数学 > 题目详情
8.已知抛物线y2=-2px过点M(-2,2).则p=1.准线方程是x=$\frac{1}{2}$.

分析 把M点坐标代入抛物线方程求出p,从而得出准线方程.

解答 解:把M(-2,2)代入y2=-2px得p=1,
即抛物线方程为y2=-2x,
∴抛物线的准线方程为x=$\frac{1}{2}$.
故答案为:1,x=$\frac{1}{2}$.

点评 本题考查了抛物线的简单性质,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

11.已知复数z=(a-i)(1+i)(a∈R,i是虚数单位)是实数,则a=1.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

12.已知A、B分别为椭圆C:$\frac{x^2}{a^2}$+$\frac{y^2}{b^2}$=1(a>b>0)的左、右顶点,两个不同的动点P、Q在椭圆C上且关于x轴对称,设直线AP、BQ的斜率分别为m、n,则当$\frac{1}{2mn}$+ln|m|+ln|n|取最小值时,椭圆C的离心率为(  )
A.$\frac{{\sqrt{2}}}{2}$B.$\frac{1}{2}$C.$\frac{{\sqrt{2}}}{3}$D.$\frac{{\sqrt{3}}}{3}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.已知函数f(x)=2lnx+x2+(a-1)x-a,(a∈R),当x≥1时,f(x)≥0恒成立.
(1)求实数a的取值范围;
(2)若正实数x1、x2(x1≠x2)满足f(x1)+f(x2)=0,证明:x1+x2>2.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.已知空间三点A(-2,0,2),B(-1,1,2),C(-3,0,4),设$\overrightarrow{a}$=$\overrightarrow{AB}$,$\overrightarrow{b}$=$\overrightarrow{AC}$
(1)若|$\overrightarrow{c}$|=3,$\overrightarrow{c}$∥$\overrightarrow{BC}$,求$\overrightarrow{c}$;
(2)若k$\overrightarrow{a}$+$\overrightarrow{b}$与k$\overrightarrow{a}$-2$\overrightarrow{b}$互相垂直,求k;
(3)若向量k$\overrightarrow{a}$+$\overrightarrow{b}$与$\overrightarrow{a}$+k$\overrightarrow{b}$平行,求k.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

13.数列{an}为非常数列,满足:a3+a9=$\frac{1}{4}$,a5=$\frac{1}{8}$,且a1a2+a2a3+…+anan+1=na1an+1对任何的正整数n都成立,则$\frac{1}{{a}_{1}}$+$\frac{1}{{a}_{2}}$+…+$\frac{1}{{a}_{50}}$的值为(  )
A.1475B.1425C.1325D.1275

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

20.已知f(x)=$\sqrt{3}$sinxcosx-sin2x,把y=f(x)的图象向右平移$\frac{π}{12}$个单位,再向上平移$\frac{1}{2}$个单位,得到y=g(x)的图象,则g($\frac{π}{4}$)=(  )
A.$\frac{\sqrt{2}}{2}$B.1C.-$\frac{\sqrt{2}}{2}$D.-1

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

17.三角形的三边长均为整数,且最长的边为11,则这样的三角形的个数有36个.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

18.已知tanα=2,求下列各式的值:
①tan($α+\frac{π}{4}$)               
 ②$\frac{sinα+cosα}{sinα-cosα}$.

查看答案和解析>>

同步练习册答案