精英家教网 > 高中数学 > 题目详情
13.数列{an}为非常数列,满足:a3+a9=$\frac{1}{4}$,a5=$\frac{1}{8}$,且a1a2+a2a3+…+anan+1=na1an+1对任何的正整数n都成立,则$\frac{1}{{a}_{1}}$+$\frac{1}{{a}_{2}}$+…+$\frac{1}{{a}_{50}}$的值为(  )
A.1475B.1425C.1325D.1275

分析 a1a2+a2a3+…+anan+1=na1an+1,可得a1a2+a2a3+…+anan+1+an+1an+2=(n+1)a1an+2,相减可得:$\frac{n}{{a}_{n+2}}$-$\frac{n+1}{{a}_{n+1}}$=-$\frac{1}{{a}_{1}}$,同理可得:$\frac{n-1}{{a}_{n+1}}$-$\frac{n}{{a}_{n}}$=-$\frac{1}{{a}_{1}}$,相减可得:$\frac{2}{{a}_{n+1}}$=$\frac{1}{{a}_{n}}+\frac{1}{{a}_{n+2}}$.再利用等差数列的通项公式即可得出.

解答 解:a1a2+a2a3+…+anan+1=na1an+1,①
a1a2+a2a3+…+anan+1+an+1an+2=(n+1)a1an+2,②
①-②,得-an+1an+2=na1an+1-(n+1)a1an+2
∴$\frac{n}{{a}_{n+2}}$-$\frac{n+1}{{a}_{n+1}}$=-$\frac{1}{{a}_{1}}$,
同理可得:$\frac{n-1}{{a}_{n+1}}$-$\frac{n}{{a}_{n}}$=-$\frac{1}{{a}_{1}}$,
∴$\frac{2}{{a}_{n+1}}$=$\frac{1}{{a}_{n}}+\frac{1}{{a}_{n+2}}$.
∴数列$\{\frac{1}{{a}_{n}}\}$是等差数列,
∴$\frac{1}{{a}_{n}}$=$\frac{1}{{a}_{1}}$+(n-1)d.
可得:an=$\frac{1}{\frac{1}{{a}_{1}}+(n-1)d}$.
由a3+a9=$\frac{1}{4}$,a5=$\frac{1}{8}$,
∴$\frac{1}{\frac{1}{{a}_{1}}+2d}$+$\frac{1}{\frac{1}{{a}_{1}}+8d}$=$\frac{1}{4}$,$\frac{1}{\frac{1}{{a}_{1}}+4d}$=$\frac{1}{8}$,d≠0.
联立解得a1=4,d=1,.
∴$\frac{1}{{a}_{n}}$=4+n-1=n+3.
∴$\frac{1}{{a}_{1}}$+$\frac{1}{{a}_{2}}$+…+$\frac{1}{{a}_{50}}$=$\frac{50×(4+50+3)}{2}$=1425.
故选:B.

点评 本题考查了等差数列的定义及其通项公式、数列递推关系,考查了推理能力与计算能力,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

16.各项为正数的等比数列{an}中,a1a2a3=5,a5a6a7=10,则a9a10a11=20.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

17.对△ABC有下面结论:①满足sinA=sinB的△ABC一定是等腰三角形②满足sinA=cosB的三角形一定是直角三角形 ③满足$\frac{a}{sinA}$=$\frac{b}{sinB}$=c的△ABC一定是直角三角形,则正确命题的序号是①③.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.己知各项均不为0的数列{an}中a1=$\frac{1}{2}$,且n≥2时,an-1-an=an-1an,其前n项和为Sn
(1)求数列{an}的通项公式;
(2)若对于任意正整数n,不等式S2n-Sn>$\frac{m}{16}$恒成立,求常数m所能取得的最大整数.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

8.已知抛物线y2=-2px过点M(-2,2).则p=1.准线方程是x=$\frac{1}{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

18.x,y满足约束条件$\left\{\begin{array}{l}{x+y-4≤0}\\{x-2y-4≤0}\\{2x-y+4≥0}\end{array}\right.$,若z=ax-y取得最大值的最优解不唯一,则实数a的值$\frac{1}{2}$ .

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

5.在等差数列{an}中,已知a6=3,a9=6,则a12=9.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

2.若f(x)=x2+bx+c对任意实数x都有f(1+x)=f(1-x),则f(cos1)与f(cos$\sqrt{2}$)的大小关系是f(cos1)<f(cos$\sqrt{2}$).

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

3.已知等边三角形的一个顶点位于抛物线y2=2px的焦点,另外两个顶点在抛物线上,则这个等边三角形的边长(4±2$\sqrt{3}$)|p|.

查看答案和解析>>

同步练习册答案