精英家教网 > 高中数学 > 题目详情
18.x,y满足约束条件$\left\{\begin{array}{l}{x+y-4≤0}\\{x-2y-4≤0}\\{2x-y+4≥0}\end{array}\right.$,若z=ax-y取得最大值的最优解不唯一,则实数a的值$\frac{1}{2}$ .

分析 作出不等式组对应的平面区域,利用目标函数的几何意义,得到直线y=ax-z斜率的变化,从而求出a的取值.

解答 解:作出约束条件$\left\{\begin{array}{l}{x+y-4≤0}\\{x-2y-4≤0}\\{2x-y+4≥0}\end{array}\right.$对应的平面区域如图:(阴影部分ABC).
由z=ax-y得y=ax-z,即直线的截距最小,z最大.
若a=0,此时y=-z,此时,目标函数只在B处取得最大值,不满足条件,
若a>0,目标函数y=ax-z的斜率k=a>0,要使z=ax-y取得最大值的最优解AB唯一,满足题意
即:直线y=ax-z与直线x-2y-4=0平行,此时a=$\frac{1}{2}$,
若a<0,目标函数y=ax-z与AC平行,要使z=ax-y取得最大值的最优解B唯一,不满足题意.
故答案为:$\frac{1}{2}$.

点评 本题主要考查线性规划的应用,利用目标函数的几何意义,结合数形结合的数学思想是解决此类问题的基本方法.注意要对a进行分类讨论,同时需要弄清楚最优解的定义.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

1.有三种卡片分别写有数字1,10,100,从上述三种卡片中选取若干张,使得这些卡片之和为m(m为正整数).考虑不同的选法种数,例如m=11时有两种选法:“一张卡片写有1,另一张写有10”或“11张写有1的卡片”.
(1)若m=100,直接写出选法种数;
(2)设n为正整数,记所选卡片的数字和为100n的选法种数为an,当n≥2时,求数列{an}的通项公式.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.如图,已知等边△ABC的边长为2,圆A的半径为1,PQ为圆A的任意一条直径.
(1)判断$\overrightarrow{BP}•\overrightarrow{CQ}-\overrightarrow{AP}•\overrightarrow{CB}$的值是否会随点P的变化而变化,请说明理由.
(2)求$\overrightarrow{BP}•\overrightarrow{CQ}$的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

6.在△ABC中,a,b,c分别为内角A,B,C的对边,若${a^2}-{b^2}=\sqrt{3}bc$,sinC=$2\sqrt{3}sinB$,则A等于(  )
A.$\frac{5π}{6}$B.$\frac{2π}{3}$C.$\frac{π}{3}$D.$\frac{π}{6}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

13.数列{an}为非常数列,满足:a3+a9=$\frac{1}{4}$,a5=$\frac{1}{8}$,且a1a2+a2a3+…+anan+1=na1an+1对任何的正整数n都成立,则$\frac{1}{{a}_{1}}$+$\frac{1}{{a}_{2}}$+…+$\frac{1}{{a}_{50}}$的值为(  )
A.1475B.1425C.1325D.1275

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

3.若实数x,y,满足3x-4y-5=0,则$\sqrt{{x^2}+{y^2}}$的最小值是(  )
A.$\sqrt{5}$B.5C.$\frac{\sqrt{5}}{5}$D.1

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

10.已知a,b∈R,i2=-1,则“a=b=1”是“$\frac{2+2i}{1-i}={(a+bi)^2}$”的(  )
A.充分不必要条件B.必要不充分条件
C.充要条件D.既不充分也不必要条件

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.求满足下列条件的解析式
(1)已知f($\frac{2}{x}+1$)=lgx,求f(x);
(2)已知f(x)是一次函数,且满足3f(x+1)-2f(x-1)=2x+17,求f(x);

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

8.给定两个长度为1的平面向量$\overrightarrow{OA}$和$\overrightarrow{OB}$,它们的夹角为90°.点C在以O为圆心的圆弧$\widehat{AB}$上变动,若$\overrightarrow{OC}$=x$\overrightarrow{OA}$+y$\overrightarrow{OB}$,其中x,y∈R,则xy的范围是(  )
A.(0,1)B.[0,1]C.$({0,\frac{1}{2}})$D.$[{0,\frac{1}{2}}]$

查看答案和解析>>

同步练习册答案