精英家教网 > 高中数学 > 题目详情

如图,在三棱锥中,底面,且
的中点,且交于点.
(1)求证:平面
(2)当时,求三棱锥的体积.

(1)详见解析;(2).

解析试题分析:(1)由已知条件平面得到,再由已知条件得到,从而得到平面,进而得到,利用等腰三角形三线合一得到,结合直线与平面垂直的判定定理得到平面,于是得到,结合题中已知条件以及直线与平面垂直的判定定理得到平面;(2)利用(1)中的结论平面,然后以点为顶点,以为高, 结合等体积法求出三棱锥的体积.
(1)证明:底面,又易知
平面
的中点,
平面
又已知
平面
(2)平面平面


平面



.
考点:1.直线与平面垂直;2.等体积法求三棱锥的体积

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

如图,已知平面
的中点,.
(1)求证:平面
(2)求证:平面平面
(3)求此多面体的体积.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

如图所示的多面体中, 是菱形,是矩形,,

(1)求证:平
(2))若,求四棱锥的体积.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

(2013•重庆)如图,四棱锥P﹣ABCD中,PA⊥底面ABCD,,BC=CD=2,
(1)求证:BD⊥平面PAC;
(2)若侧棱PC上的点F满足PF=7FC,求三棱锥P﹣BDF的体积.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

在如图所示的多面体ABCDE中,AB⊥平面ACD,DE⊥平面ACD,且AC=AD=CD=DE=2,AB=1.

(1)请在线段CE上找到点F的位置,使得恰有直线BF∥平面ACD,并证明这一结论;
(2)求多面体ABCDE的体积.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

如图:已知长方体的底面是边长为的正方形,高的中点,交于点.
(1)求证:平面
(2)求证:∥平面
(3)求三棱锥的体积.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

如图,已知正方形的边长为,点分别在边上,,现将△沿线段折起到△位置,使得

(1)求五棱锥的体积;
(2)求平面与平面的夹角.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

在如图所示的多面体中,已知正三棱柱ABCA1B1C1的所有棱长均为2,四边形ABDC是菱形.

(1)求证:平面ADC1⊥平面BCC1B1
(2)求该多面体的体积.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

已知点在同一个球面上, 平面,若
,则两点间的球面距离是            

查看答案和解析>>

同步练习册答案