精英家教网 > 高中数学 > 题目详情

如图所示的多面体中, 是菱形,是矩形,,

(1)求证:平
(2))若,求四棱锥的体积.

(1)见解析     (2)

解析试题分析:(1)利用直线与平面平行的判定定理证明,BC,利用面面平行的判定定理可得结论;
(2)首先要找到四棱锥,为此连接,易证, 即为四棱锥的高,最后求得,可求四棱锥的体积

(1)由是菱形


 
是矩形



 
(2)连接
是菱形,
,



为四棱锥的高
是菱形,
为等边三角形,
;则

考点:平面与平面平行的判定;棱锥的体积

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

长方体的各顶点都在球的球面上,其中两点的球面距离记为两点的球面距离记为,则的值为       

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

如图,多面体的直观图及三视图如图所示,分别为的中点.
(1)求证:平面
(2)求多面体的体积.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知某几何体的俯视图是如图所示的矩形,正视图是一个底边长为8,高为4的等腰三角形,侧视图(或称左视图)是一个底边长为6,高为4的等腰三角形.
(1)求该几何体的体积V;
(2)求该几何体的侧面积S.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

如图,在三棱锥中,°,平面平面分别为中点.
(1)求证:∥平面
(2)求证:
(3)求三棱锥的体积.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

如图,在三棱锥中,底面,且
的中点,且交于点.
(1)求证:平面
(2)当时,求三棱锥的体积.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

如图,在四棱锥P-ABCD中,PD⊥平面ABCD,四边形ABCD是菱形,AC=6,BD=8,E是PB上任意一点,△AEC面积的最小值是3.

(1)求证:AC⊥DE;
(2)求四棱锥P-ABCD的体积.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

如图,三棱柱中,,,.

(1)证明:;
(2)若,,求三棱柱的体积.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

三棱柱的直观图和三视图如下图所示,其侧视图为正三角形(单位cm)

⑴当x=4时,求几何体的侧面积和体积
⑵当x取何值时,直线AB1与平面BB1C1C和平面A1B1C1所成角大小相等。

查看答案和解析>>

同步练习册答案