精英家教网 > 高中数学 > 题目详情
在正方体中,是棱的中点,是侧面内的动点,且∥平面,记与平面所成的角为,下列说法错误的是(   )
A.点的轨迹是一条线段B.不可能平行
C.是异面直线D.
B

试题分析:由已知可取的中点,的中点,连结,易证平面∥平面,故可知点的轨迹是一条线段是异面直线 ,A、C对;当点重合时平行,B不对;在上取点F,连结,可证与平面所成的角,当点F在MN的中点时最大,此时,则,D对,故选B.
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:解答题

如图,在正三棱柱ABC—A1B1C1中,.

(1)求直线与平面所成角的正弦值;
(2)在线段上是否存在点?使得二面角的大小为60°,若存在,求出的长;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知三棱柱的侧棱长和底面边长均为2,在底面ABC内的射影O为底面△ABC的中心,如图所示:

(1)联结,求异面直线所成角的大小;
(2)联结,求三棱锥C1-BCA1的体积.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

如图,在四棱锥中,底面ABCD是正方形,侧棱底面ABCD,,E是PC的中点.

(Ⅰ)证明 平面EDB;
(Ⅱ)求EB与底面ABCD所成的角的正切值.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

如图,四棱锥P-ABCD中,的中点.

(1)求证:
(2)求二面角的平面角的正弦值.

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

设m,n是两条不同的直线,α,β是两个不重合的平面,给定下列四个命题:①⇒m⊥α;②⇒α⊥β;
⇒m∥n;④⇒m∥n
其中为真命题的序号是________.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

已知两条直线,两个平面.下面四个命题中不正确的是(   )
A.
B.
C.,
D.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

棱长为1的正方体ABCD A1B1C1D1中,点M,N分别在线段AB1,BC1上,且AM=BN,给出以下结论:
①AA1⊥MN
②异面直线AB1,BC1所成的角为60°
③四面体B1 D1CA的体积为
④A1C⊥AB1,A1C⊥BC1, 其中正确的结论的个数为(  )
A.1B.2C.3D.4

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

设l、m是两条不同的直线,a,β是两个不同的平面,有下列命题:
①l//m,ma,则l//a ;② l//a,m//a 则 l//m; ③a丄β,la,则l丄β; ④l丄a,m丄a,则l//m.
其中正确的命题的个数是(      )
A.1B.2C.3D.4

查看答案和解析>>

同步练习册答案