精英家教网 > 高中数学 > 题目详情
如图,在四棱锥中,底面ABCD是正方形,侧棱底面ABCD,,E是PC的中点.

(Ⅰ)证明 平面EDB;
(Ⅱ)求EB与底面ABCD所成的角的正切值.
(Ⅰ)见解析;(Ⅱ).

试题分析:(Ⅰ)令AC、BD交于点O,连接OE,证明OE∥AP,即可证明AP∥面BDE;(Ⅱ)先找到直线与平面所成的角,令F是CD中点,又E是PC中点,连结EF,BF,可以证明EF⊥面ABCD,故∠EBF为面BE与面ABCD所成的角,在Rt⊿BEF中求出其正切值.
试题解析:(Ⅰ)令AC、BD交于点O,连接OE,∵O是AC中点,又E是PC中点
∴ OE∥AP                                  3分
又OE面BDE,AP面BDE                  5分
∴AP∥面BDE                                    6分
(Ⅱ)令F是CD中点,又E是PC中点,连结EF,BF
∴EF∥PD,又PD⊥面ABCD
∴EF⊥面ABCD                                   8分
∴∠EBF为面BE与面ABCD所成的角.
令PD=CD=2a
则CD="EF=a," BF=                  10分
在Rt⊿BEF中,
故BE与面ABCD所成角的正切是.              12分
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:解答题

直三棱柱ABC-A1B1C1的所有棱长都为2,D为CC1中点.

(1)求证:直线AB1⊥平面A1BD.
(2)求二面角A-A1D-B正弦值的大小.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知在棱长为2的正方体中,的中点.
(1)求证:
(2)求三棱锥的体积.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

如图,四棱锥的底面是正方形,底面上一点

(1)求证:平面平面
(2)设,求点到平面的距离.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

在如图所示的几何体中,四边形均为全等的直角梯形,且.

(Ⅰ)求证:平面
(Ⅱ)设,求点到平面的距离.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

如左图,四边形中,的中点,,将左图沿直线折起,使得二面角,如右图.
(1)证明:平面
(2)求直线与平面所成角的余弦值.

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

设α,β为两个不重合的平面,m,n为两条不重合的直线,给出下列四个命题:
①若m⊥n,m⊥α,n?α则n∥α;
②若α⊥β,则α∩β=m,n?α,n⊥m,则n⊥β;
③若m⊥n,m∥α,n∥β,则α⊥β;
④若n?α,m?β,α与β相交且不垂直,则n与m不垂直.
其中,所有真命题的序号是________.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

在正方体中,是棱的中点,是侧面内的动点,且∥平面,记与平面所成的角为,下列说法错误的是(   )
A.点的轨迹是一条线段B.不可能平行
C.是异面直线D.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

已知为异面直线,点A、B在直线上,点C、D在直线上,且AC=AD,BC=BD,则直线所成的角为 (    )
A. 900        B. 600      C. 450        D. 300

查看答案和解析>>

同步练习册答案