精英家教网 > 高中数学 > 题目详情
从甲、乙、丙、丁四名同学中选出三名同学,分别参加三个不同科目的竞赛,其中甲同学必须参赛,则不同的参赛方案共有
 
种.
考点:计数原理的应用
专题:应用题,排列组合
分析:由于甲同学必须参赛,所以从甲、乙、丙、丁四名同学中选出三名同学,只有3种选择;然后甲同学和另外的2名同学,分别参加三个不同科目的竞赛又有3×2×1=6种选法,因此共有:3×6=18(种).
解答: 解:根据乘法原理可得3×(3×2×1)=3×6=18(种).
故答案为:18
点评:本题需要按乘法原理去考虑问题; 即做一件事情,完成它需要分成n个步骤,做第一步有M1种不同的方法,做第二步有M2种不同的方法,…,做第n步有Mn种不同的方法,那么完成这件事就有M1×M2×…×Mn种不同的方法,注意要分两步思考.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知函数y=f(x)是定义域为R的偶函数.当x≥0时,f(x)=
5
2
x2(0≤x≤1)
(
1
2
)x+2(x>1)
,若关于x的方程[f(x)]2+af(x)+b=0,a,b∈R有且仅有6个不同实数根,则实数a的取值范围是(  )
A、(-5,-3)∪(-1,0)
B、(-5,-2)∪(-
9
2
9
2
)
C、(-5,-
9
2
)∪(-
9
2
,-2)
D、(-
9
2
,-2)∪(-2,-1)

查看答案和解析>>

科目:高中数学 来源: 题型:

三棱锥S-ABC中,∠SBA=∠SCA=90°,△ABC是斜边AB=a的等腰直角三角形,则以下结论中:
①异面直线SB与AC所成的角为90°.
②直线SB⊥平面ABC;
③平面SBC⊥平面SAC;
④点C到平面SAB的距离是
1
2
a.
其中正确的个数是(  )
A、1B、2C、3D、4

查看答案和解析>>

科目:高中数学 来源: 题型:

已知f(x)=-x2+2x,x∈[-1,2],则f(x)的值域为
 

查看答案和解析>>

科目:高中数学 来源: 题型:

如图所示正方体AC1,下面结论错误的是(  )
A、BD∥平面CB1D1
B、AC1⊥BD
C、AC1⊥平面CB1D1
D、异面直线AD与CB1角为60°

查看答案和解析>>

科目:高中数学 来源: 题型:

若函数y=f(-x)的定义域是[0,2],则函数y=f(2x-1)的定义域是
 

查看答案和解析>>

科目:高中数学 来源: 题型:

数列-
4
3
9
5
,-
16
7
25
9
,…的一个通项公式是(  )
A、an=(-1)n
n3+n
2n+1
B、an=(-1)n
n(n+1)
2n+1
C、an=(-1)n
(n+1)2
2n-1
D、an=(-1)n
(n+1)2
2n+1

查看答案和解析>>

科目:高中数学 来源: 题型:

已知M为等腰△ABC底边BC上的任意一点.求证:|AB|2=|AM|2+|BM|•|MC|

查看答案和解析>>

科目:高中数学 来源: 题型:

下列多项式中能用平方差公式分解因式的是(  )
A、a2+(-b)2
B、5m2-20mn
C、-x2-y2
D、-x2+9

查看答案和解析>>

同步练习册答案