分析 (1)根据等差、等比数列的定义与通项公式,列出方程组求出首项与公差,即可写出通项公式;
(2)利用错位相减法求Tn即可.
解答 解:(1)设{an}的公差为d,
所以:$\left\{\begin{array}{l}{{3a}_{1}+3d=15}\\{{a}_{1}+{2b}_{1}=3}\\{{a}_{1}+d+{2b}_{1}=6}\end{array}\right.$,
解得:a1=2,d=3,b1=$\frac{1}{2}$;
∴an=2+3(n-1)=3n-1,
bn=$\frac{1}{2}$•${(\frac{1}{2})}^{n-1}$=${(\frac{1}{2})}^{n}$;
(2)由(1)知,
Tn=2×$\frac{1}{2}$+5×${(\frac{1}{2})}^{2}$+8×${(\frac{1}{2})}^{3}$+…+(3n-4)×${(\frac{1}{2})}^{n-1}$+(3n-1)×${(\frac{1}{2})}^{n}$,①
①×$\frac{1}{2}$得,
$\frac{1}{2}$Tn=2×${(\frac{1}{2})}^{2}$+5×${(\frac{1}{2})}^{3}$+…+(3n-4)×${(\frac{1}{2})}^{n}$+(3n-1)×${(\frac{1}{2})}^{n+1}$,②
①-②得,
$\frac{1}{2}$Tn=2×$\frac{1}{2}$+3×[${(\frac{1}{2})}^{2}$+${(\frac{1}{2})}^{3}$+…+${(\frac{1}{2})}^{n}$]-(3n-1)×${(\frac{1}{2})}^{n+1}$
=1+3×$\frac{\frac{1}{4}×[1{-(\frac{1}{2})}^{n+1}]}{1-\frac{1}{2}}$-(3n-1)×${(\frac{1}{2})}^{n+1}$,
∴Tn=-(3n+5)×${(\frac{1}{2})}^{n}$+5.
点评 本题考查了等差、等比数列的定义与通项公式以及前n项和的应用问题,是综合性题目.
科目:高中数学 来源: 题型:选择题
| A. | 等边三角形 | B. | 直角三角形 | C. | 等腰三角形 | D. | 等腰直角三角形 |
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | {x|2<x≤3} | B. | {x|3≤x<4} | C. | {x|2<x<4} | D. | {x|2≤x<4} |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | f(x)=1,g(x)=x0 | B. | f(x)=|x|,g(x)=$\left\{\begin{array}{l}x,x≥0\\-x,x<0\end{array}\right.$ | ||
| C. | f(x)=x+2,g(x)=$\frac{{{x^2}-4}}{x-2}$ | D. | f(x)=x,g(x)=($\sqrt{x}$)2 |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com