精英家教网 > 高中数学 > 题目详情
11.函数y=x2-4x+7,x∈[1,+∞)的值域是(  )
A.{y|y∈R}B.{y|y≥3}C.{y|y≥7}D.{y|y>3}

分析 分析函数的图象和性质,结合定义域,求出函数的最小值,可得答案.

解答 解:函数y=x2-4x+7的图象是开口朝上,且以直线x=2为对称轴的抛物线,
由x∈[1,+∞)得:
x=2时,函数取最小值3,无最大值,
故函数y=x2-4x+7,x∈[1,+∞)的值域是{y|y≥3},
故选:B

点评 本题考查的知识点是二次函数的图象和性质,熟练掌握二次函数的图象和性质,是解答的关键.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

1.(1)已知函数f(x)的定义域为[0,1],求f(x2-1)的定义域;
(2)已知函数f(2x-1)的定义域为[0,1),求f(1-3x)的定义域.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

2.已知椭圆$C:\frac{x^2}{a^2}+\frac{y^2}{b^2}=1({a>0,b>0})$的两焦点与短轴的一个端点的连线构成等边三角形,直线$x+y+2\sqrt{2}-1=0$与以椭圆C的右焦点为圆心,以椭圆的长半轴长为半径的圆相切.
(1)求椭圆C的方程;
(2)设点B,C,D是椭圆上不同于椭圆顶点的三点,点B与点D关于原点O对称.设直线CD,CB,OB,OC的斜率分别为k1,k2,k3,k4,且k1k2=k3k4
(ⅰ)求k1k2的值;
(ⅱ)求OB2+OC2的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

19.已知数列{an}满足a1+a2+a3+…+an=n-an.其中n∈N*
(1)求数列{an}的通项公式;
(2)求数列{(2-n)(an-1)}的前n项和.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

6.已知数列$\sqrt{2}$、$\sqrt{6}$、$\sqrt{10}$、$\sqrt{14}$,3$\sqrt{2}$…那么$\sqrt{26}$是这个数列的第(  )项.
A.5B.6C.7D.8

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

16.设集合A={x|x∈Z,-10≤x≤-1},B={x|x∈Z,x2≤25},则A∪B中的元素个数是(  )
A.15B.16C.10D.11

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

3.红蓝两色车,马、炮棋子各一枚,将这6枚棋子排成一列,其中每对同字的棋子中,均为红棋子在前,蓝棋子在后,满足这种条件的不同的排列方式共有(  )
A.36种B.60种C.90种D.120种

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

20.函数f(x)=log2(4x-3)+log2(2-x)的定义域是($\frac{3}{4}$,2).最大值是2log2$\frac{5}{4}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.等差数列{an}的前n项和为Sn,等比数列{bn}的公比为$\frac{1}{2}$,满足S3=15,a1+2b1=3,a1+4b1=6.
(1)求数列{an},{bn}通项an,bn
(2)求数列{an•bn}的前n项和Tn

查看答案和解析>>

同步练习册答案