精英家教网 > 高中数学 > 题目详情
13.函数y=lg(x+1)的定义域是(  )
A.[-1,+∞)B.(-1,+∞)C.(0,+∞)D.[0,+∞)

分析 由对数式的真数大于0求解一元一次不等式得答案.

解答 解:由x+1>0,得x>-1.
∴函数y=lg(x+1)的定义域是(-1,+∞).
故选:B.

点评 本题考查函数的定义域及其求法,是基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

3.定义函数F(a,b)=$\frac{1}{2}$(a+b-|a-b|)(a,b∈R),设函数f(x)=-x2+2x+4,g(x)=x+2(x∈R)函数F(f(x),g(x))的最大值与零点之和为(  )
A.4B.6C.$4-2\sqrt{5}$D.$2\sqrt{5}+2$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.已知等比数列{an}的公比为正数,且a4a8=2a52,a2=1,则a10=(  )
A.2B.4C.8D.16

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.同时满足下列两个性质的函数f(x)称为“H函数”:
①函数f(x)在定义域上是单调函数;
②函数f(x)在定义域内存在区间[a,b],使得f(x)在[a,b]的值域也为[a,b].
(1)判断函数y=x3是否为“H函数”,若不是,请说明理由;若是,求满足条件②的区间[a,b]中端点a,b的值
(2)若函数y=lgx-t是“H函数”,求实数t的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

8.若a>b>0,c<d<0,则一定有(  )
A.ac>bdB.ac<bdC.ad<bcD.ad>bc

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

18.已知函数f(x+1)=2x-1,则f(x)的解析式为(  )
A.f(x)=3-2xB.f(x)=2x-3C.f(x)=3x-2D.f(x)=3x

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

5.棱长为2的正方体的顶点都在同一个球面上,则球的表面积是(  )
A.B.12πC.16πD.20π

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.在平面直角坐标系xOy中,以坐标原点O为极点,x轴的非负半轴为极轴,建立极坐标系.曲线C的极坐标方程是ρ=4cosθ(0$≤θ≤\frac{π}{2}$),直线l的参数方程是$\left\{\begin{array}{l}{x=-3+tcos\frac{π}{6}}\\{y=tsin\frac{π}{6}}\end{array}\right.$(t为参数).
(1)求直线l的直角坐标方程和曲线C的参数方程;
(2)求曲线C上的动点M到直线l的距离的范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.已知椭圆C的参数方程为$\left\{\begin{array}{l}{x=2cosθ}\\{y=sinθ}\end{array}\right.$(θ为参数),直线l的参数方程为$\left\{\begin{array}{l}{x=t}\\{y=t}\end{array}\right.$(t为参数)
(1)将直线l与椭圆C的参数方程化为普通方程;
(2)求直线l与椭圆C相交的弦长.

查看答案和解析>>

同步练习册答案