精英家教网 > 高中数学 > 题目详情
已知
a
=(2cosx,1),
b
=(cosx,
3
sin2x+m),f(x)=
a
b

(1)求函数在[0,π]上的单调增区间;
(2)当x∈[0,
π
6
]时,f(x)的最大值为4,求实数m的值.(提示:
a
b
=x1x2+y1y2
考点:三角函数中的恒等变换应用,平面向量数量积的运算
专题:常规题型,三角函数的图像与性质
分析:根据向量的内积运算,利用两角和的正弦公式化成正弦函数的标准形式,然后根据正弦函数的单调性与最值求函数f(x)的单调区间与最值.
解答: 解:依题意得:
f(x)=
a
b
=2cos2x+
3
sin2x+m
=1+cos2x+
3
sin2x+m
=2sin(2x+
π
6
)+1+m
(1)令-
π
2
+2kπ≤2x+
π
6
≤2kπ+
π
2
,得
-
π
3
≤x≤kπ+
π
6
(k∈Z)
∴f(x)在[0,π]上的单调增区间为[0,
π
6
],[
3
,π
].
(2)∵x∈[0,
π
6
],∴
π
6
≤2x+
π
6
π
2

1
2
≤sin(2x+
π
6
)≤1

∴当2x+
π
6
=
π
2
时,f(x)max=2+m+1
依题意得:3+m=4,∴m=1.
点评:本题考查了向量的内积运算、两角和的正弦公式及三角函数的性质,解题的关键是把函数f(x)化成正弦函数的标准形式.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

若函数f(x)=loga(2x2+x)(a>0,a≠1)在区间(
1
2
,1)内恒有f(x)>0,则f(x)的单调递增区间是(  )
A、(-∞,-
1
4
B、(-
1
4
,+∞)
C、(-∞,-
1
2
D、(0,+∞)

查看答案和解析>>

科目:高中数学 来源: 题型:

已知直线l的参数方程为
x=-10+t
y=t
 (t为参数),以坐标原点为极点,x轴的正半轴为极轴建立极坐标系,圆C的极坐标方程为ρ2-4ρsinθ+2=0.
(Ⅰ)把圆C的极坐标方程化为直角坐标方程;
(Ⅱ)将直线l向右平移h个单位,所得直线l′与圆C相切,求h.

查看答案和解析>>

科目:高中数学 来源: 题型:

在△ABC中.∠BAC=120°,AB=3,BC=7.
(1)求AC的长;
(2)求△ABC的面积.

查看答案和解析>>

科目:高中数学 来源: 题型:

在△ABC中,角A,B,C所对的边长分别为a,b,c,若△ABC的周长为
2
+1,且sinA+sinC=
2
sinB.
(1)求边长b;
(2)若△ABC的面积为
1
6
sinB,求角B的度数.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=
cos4x-1
2cos(
π
2
+2x)
+cos2x-sin2x.
(1)求函数f(x)的最小正周期和单调递减区间;
(2)在所给坐标系中画出函数在区间[
π
3
3
]的图象(用五点法作图).

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,矩形ABCD中,|AB|=4,|BC|=2,E,F,M,N分别是矩形四条边的中点,G,H分别是线段ON,CN的中点.
(Ⅰ)证明:直线EG与FH的交点L在椭圆Ω:
x2
4
+y2=1上;
(Ⅱ)设直线l:y=x+m(-1≤m≤1)与椭圆Ω:
x2
4
+y2=1有两个不同的交点P,Q,直线l与矩形ABCD有两个不同的交点S,T,求
|PQ|
|ST|
的最大值及取得最大值时m的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

设函数f(x)=
ex
ex
+3,g(x)=-2x2+ax-lnx(a∈R)
(Ⅰ)若函数g(x)在区间(
1
4
,2)上不单调,求实数a的取值范围;
(Ⅱ)若对任意x∈(0,e),都有唯一的x0∈[e-4,e],使得f(x)=g(x0)+2x02成立,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

某中学在高一开设了数学史等4门不同的选修课,每个学生必须选修,且只能从中选一门.该校高一的3名学生甲、乙、丙对这4门不同的选修课的兴趣相同.
(1)求恰有2门选修课这3个学生都没有选择的概率;
(2)设随机变量ξ为甲、乙、丙这三个学生选修数学史这门课的人数,求ξ的分布列及期望,方差.

查看答案和解析>>

同步练习册答案