精英家教网 > 高中数学 > 题目详情
17.已知等差数列{an}的前n项和为Sn,a1=-7,S8=0.
(Ⅰ)求{an}的通项公式;
(Ⅱ)数列{bn}满足b1=$\frac{1}{16}$,bnbn+1=2an,求数列{bn}的通项公式.

分析 (Ⅰ)由S8=0得a8=7,从而可得d=$\frac{a8-a1}{8-1}$=2,从而求得通项公式;
(Ⅱ)由方程可得bn+2=4bn,从而求得{bn}是以$\frac{1}{16}$为首项,以2为公比的等比数列,从而求通项公式.

解答 解:(Ⅰ)由S8=0得a1+a8=-7+a8=0,
∴a8=7,d=$\frac{a8-a1}{8-1}$=2,
所以{an}的前n项和:
Sn=na1+$\frac{n(n-1)}{2}$d
=-7n+n(n-1)=n2-8n,
an=-7+2(n-1)=2n-9.
(Ⅱ)由题设得bnbn+1=2${\;}^{{a}_{n}}$,bn+1bn+2=2${\;}^{{a}_{n+1}}$,
两式相除得bn+2=4bn
又∵b1b2=2${\;}^{{a}_{1}}$=$\frac{1}{128}$,b1=$\frac{1}{16}$,
∴b2=$\frac{1}{8}$=2b1
∴bn+1=2bn
即{bn}是以$\frac{1}{16}$为首项,以2为公比的等比数列,
故bn=2n-5

点评 本题考查了等差数列与等比数列的性质的判断与应用,同时考查了方程思想的应用,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

7.若MA垂直菱形ABCD所在的平面,那么MC与BD的位置关系是(  )
A.异面B.平行C.垂直相交D.相交但不垂直

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.公差不为零的等差数列{an}中,a1,a2,a5成等比数列,且该数列的前10项和为100,数列{bn}的前n项和为Sn,且满足${S_n}=2{b_n}-1,\;\;n∈{N^*}$.
(Ⅰ)求数列{an},{bn}的通项公式;
(Ⅱ)令${c_n}=\frac{{1+{a_n}}}{{4{b_n}}}$,数列{cn}的前n项和为Tn,求Tn的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.数列{an}满足a1=1,an=$\frac{n{a}_{n-1}}{{a}_{n-1}+2n-2}$(n≥2,n∈N*).
(1)求a2,a3,a4的值;
(2)求数列{an}的通项公式;
(3)设bn=(1-$\frac{1}{{2}^{n}}$)an,求数列{bn}的前n项和.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

12.已知数列{an}的前n项和Sn=(-1)n-1•n,若对任意的正整数n,有(an+1-p)(an-p)<0恒成立,则实数p的取值范围是(-3,1).

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.选择适当的方法解下列三角形:
(1)在△ABC中,b=4,c=13,S△ABC=10,求a;
(2)在△ABC中,a=2$\sqrt{3}$,b=6,A=30°,解此三角形.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

9.在平面四边形ABCD中,若AB=1,BC=2,B=60°,C=45°,D=120°,则AD=$\frac{\sqrt{6}-\sqrt{2}}{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

6.在△ABC中,若a=3,c=4,cosC=-$\frac{1}{4}$,则b=$\frac{7}{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

7.设全集U={-2,-1,0,1,2},集合M={-1,0,1},N={x|x2-x-2=0},则(∁UM)∩N=(  )
A.{2}B.{-1}C.{-2,-1,2}D.{-1,1}

查看答案和解析>>

同步练习册答案