精英家教网 > 高中数学 > 题目详情
12.已知数列{an}的前n项和Sn=(-1)n-1•n,若对任意的正整数n,有(an+1-p)(an-p)<0恒成立,则实数p的取值范围是(-3,1).

分析 Sn=(-1)n-1•n,可得:a1=S1=1.当n≥2时,an=Sn-Sn-1,可得an=(-1)n-1(2n-1),对n分类讨论,利用(an+1-p)(an-p)<0恒成立,即可解出.

解答 解:∵Sn=(-1)n-1•n,
∴a1=S1=1.
当n≥2时,an=Sn-Sn-1=(-1)n-1•n-(-1)n-2(n-1)=(-1)n-1(2n-1),当n=1时也成立,
∴an=(-1)n-1(2n-1),
当n为偶数时,(an+1-p)(an-p)<0化为:[(2n+1)-p][-(2n-1)-p]<0,-(2n-1)<p<2n+1,可得-3<p<5.
当n为奇数时,(an+1-p)(an-p)<0化为:[-(2n+1)-p][(2n-1)-p]<0,-(2n+1)<p<2n-1,可得-3<p<1.
∴$\left\{\begin{array}{l}{-3<p<5}\\{-3<p<1}\end{array}\right.$,
解得-3<p<1.
故答案为:(-3,1).

点评 本题考查了递推公式、不等式的解法、分类讨论方法,考查了推理能力与计算能力,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

2.设等差数列{an}的前n项和为Sn,且S4=4S2,a2n=2an+1.
(1)求数列{an}的通项公式;
(2)若数列{bn}满足$\frac{{b}_{1}}{{a}_{1}}$+$\frac{{b}_{2}}{{a}_{2}}$+…+$\frac{{b}_{n}}{{a}_{n}}$=1-$\frac{1}{{2}^{n}}$,n∈N*,求{bn}的前n项和Tn

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

3.在数列{an}中,已知${S_n}={2^n}-1$,则a12+a22+…+an2等于(  )
A.$\frac{{4}^{n}-1}{3}$B.$\frac{({2}^{n}-1)^{2}}{3}$C.4n-1D.(2n-1)2

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

20.已知集合M={y|y=2sinx,x∈R},N={x|y=lgx},则M∩N为(  )
A.[-2,2]B.(0,+∞)C.(0,2]D.[0,2]

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

7.在△ABC中,角A,B,C所对应的边分别为a,b,c,若$\frac{sinA}{a}=\frac{\sqrt{3}cosC}{c}$,则∠C=60°.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

17.已知等差数列{an}的前n项和为Sn,a1=-7,S8=0.
(Ⅰ)求{an}的通项公式;
(Ⅱ)数列{bn}满足b1=$\frac{1}{16}$,bnbn+1=2an,求数列{bn}的通项公式.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.已知定义在R上的偶函数f(x),满足f(x+4)=f(x),f(x)=sinπx+2|sinπx|,x∈[0,2],函数g(x)=f(x)-loga(x+$\frac{3}{2}$),若以g(x)=0在区间[-1,3]上至少6个根,则a的取值范围为(  )
A.[${4}^{\frac{1}{3}}$,+∞)B.[${4}^{\frac{1}{3}}$,6]C.[4,+∞)D.[3,4]

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.如图,在棱长为2的正方体ABCD-A1B1C1D1中,E、F分别是棱BB1、CC1的中点,AC与BD交于点O.
(1)求证:OE⊥平面ACD1
(2)求异面直线OE与BF所成角的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

2.已知命题p;$\frac{1}{2}$≤x≤1,命题q:(x-a)(x-a-1)≤0,若¬p是¬q的必要不充分条件,则实数a的取值范围是(  )
A.[0,$\frac{1}{2}$]B.[$\frac{1}{2}$,1]C.[$\frac{1}{3}$,$\frac{1}{2}$]D.$(\frac{1}{3},\frac{1}{2}]$

查看答案和解析>>

同步练习册答案