精英家教网 > 高中数学 > 题目详情
3.已知a=4${∫}_{0}^{\frac{π}{2}}$cos(2x+$\frac{π}{6}$)dx,则二项式(x2+$\frac{a}{x}$)5的展开式中x4的系数为40.

分析 a=2$sin(2x+\frac{π}{6}){|}_{0}^{\frac{π}{2}}$=-2,则二项式(x2+$\frac{a}{x}$)5即$({x}^{2}-\frac{2}{x})^{5}$,利用其展开式的通项公式即可得出.

解答 解:a=4${∫}_{0}^{\frac{π}{2}}$cos(2x+$\frac{π}{6}$)dx=2$sin(2x+\frac{π}{6}){|}_{0}^{\frac{π}{2}}$=-2,
则二项式(x2+$\frac{a}{x}$)5即$({x}^{2}-\frac{2}{x})^{5}$的展开式的通项公式:
Tr+1=${∁}_{5}^{r}({x}^{2})^{5-r}$$(-\frac{2}{x})^{r}$=(-2)r${∁}_{5}^{r}$x10-3r
令10-3r=4,解得r=2.
∴展开式中x4的系数=$(-2)^{2}{∁}_{5}^{2}$=40.
故答案为:40.

点评 本题考查了二项式定理的应用,考查了推理能力与计算能力,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

13.椭圆C:$\frac{x^2}{a^2}$+$\frac{y^2}{6}$=1(a>0)的离心率是$\frac{{\sqrt{6}}}{6}$,则实数a为(  )
A.$\frac{{6\sqrt{5}}}{5}$B.$\sqrt{5}$C.$\frac{{6\sqrt{5}}}{5}$或$\sqrt{5}$D.$\frac{{\sqrt{5}}}{5}$或$\sqrt{5}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.某公司的两个部门招聘工作人员,应聘者从 T1、T2两组试题中选择一组参加测试,成绩合格者可签约.甲、乙、丙、丁四人参加应聘考试,其中甲、乙两人选择使用试题 T1,且表示只要成绩合格就签约;丙、丁两人选择使用试题 T2,并约定:两人成绩都合格就一同签约,否则两人都不签约.已知甲、乙考试合格的概率都是$\frac{1}{2}$,丙、丁考试合格的概率都是$\frac{2}{3}$,且考试是否合格互不影响.
(I)求丙、丁未签约的概率;
(II)记签约人数为 X,求 X的分布列和数学期望EX.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

11.将正弦曲线y=sinx的纵坐标y伸长到原来的3倍,横坐标不变,得到的曲线是y=3sinx.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

18.某校为了了解学生对消防知识的了解情况,从高一年级和高二年级各选取100名同学进行消防知识竞赛.图(1)和图(2)分别是对高一年级和高二年级参加竞赛的学生成绩按[40,50),[50,60),[60,70),[70,80]分组,得到的频率分布直方图.
(1)请估算参加这次知识竞赛的高一年级学生成绩的众数和高二年级学生成绩的平均值;
(2)完成下面2×2列联表,并回答:有多大的把握可以认为“学生所在的年级与消防常识的了解存在相关性”?
成绩小于60分人数成绩不小于60分人数合计
高一
高二
合计
附:临界值表及参考公式:K2=$\frac{{n{{({ad-bc})}^2}}}{{({a+b})({c+d})({a+c})({b+d})}}$,n=a+b+c+d.
P(K2≥x00.150.100.050.0250.0100.0050.001
x02.0722.7063.8415.0246.6357.87910.828

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

8.函数f(x)=2x+loga(x+1)+3恒过定点为(  )
A.(0,3)B.(0,4)C.$(-1,\frac{7}{2})$D.(-1,4)

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

15.已知实数x,y满足$\left\{\begin{array}{l}x+2y-1≥0\\ x-2y+1≥0\\ x≤3\end{array}\right.$,则$\frac{y}{x+2}$的最大值为$\frac{2}{5}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

15.已知平面向量$\overrightarrow{a}$,$\overrightarrow{b}$满足$\overrightarrow{a•}$($\overrightarrow{a}+\overrightarrow{b}$)=5,且|$\overrightarrow{a}$|=2,|$\overrightarrow{b}$|=1,则向量$\overrightarrow{a}$与$\overrightarrow{b}$夹角的正切值为(  )
A.$\frac{\sqrt{3}}{3}$B.$\sqrt{3}$C.-$\sqrt{3}$D.-$\frac{\sqrt{3}}{3}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

16.在平面直角坐标系xOy中,已知直线l的参数方程为$\left\{\begin{array}{l}{x=tcos\frac{8π}{3}}\\{y=-4+tsin\frac{8π}{3}}\end{array}\right.$(t为参数),以坐标原点为极点,x轴的正半轴为极轴,建立极坐标系,曲线C的极坐标方程为:ρ2-3ρ-4=0(ρ≥0).
(1)写出直线l的普通方程与曲线C的直角坐标系方程;
(2)设直线l与曲线C相交于A,B两点,求∠AOB的值.

查看答案和解析>>

同步练习册答案