14£®Ä³¹«Ë¾µÄÁ½¸ö²¿ÃÅÕÐÆ¸¹¤×÷ÈËÔ±£¬Ó¦Æ¸Õß´Ó T1¡¢T2Á½×éÊÔÌâÖÐÑ¡ÔñÒ»×é²Î¼Ó²âÊÔ£¬³É¼¨ºÏ¸ñÕß¿ÉǩԼ£®¼×¡¢ÒÒ¡¢±û¡¢¶¡ËÄÈ˲μÓӦƸ¿¼ÊÔ£¬ÆäÖмס¢ÒÒÁ½ÈËÑ¡ÔñʹÓÃÊÔÌâ T1£¬ÇÒ±íʾֻҪ³É¼¨ºÏ¸ñ¾ÍǩԼ£»±û¡¢¶¡Á½ÈËÑ¡ÔñʹÓÃÊÔÌâ T2£¬²¢Ô¼¶¨£ºÁ½È˳ɼ¨¶¼ºÏ¸ñ¾ÍһͬǩԼ£¬·ñÔòÁ½È˶¼²»Ç©Ô¼£®ÒÑÖª¼×¡¢ÒÒ¿¼ÊԺϸñµÄ¸ÅÂʶ¼ÊÇ$\frac{1}{2}$£¬±û¡¢¶¡¿¼ÊԺϸñµÄ¸ÅÂʶ¼ÊÇ$\frac{2}{3}$£¬ÇÒ¿¼ÊÔÊÇ·ñºÏ¸ñ»¥²»Ó°Ï죮
£¨I£©Çó±û¡¢¶¡Î´Ç©Ô¼µÄ¸ÅÂÊ£»
£¨II£©¼ÇǩԼÈËÊýΪ X£¬Çó XµÄ·Ö²¼ÁкÍÊýѧÆÚÍûEX£®

·ÖÎö £¨I£©·Ö±ð¼Çʼþ¼×¡¢ÒÒ¡¢±û¡¢¶¡¿¼ÊԺϸñΪ A£¬B£¬C£¬D£®ÓÉÌâÒâÖª A£¬B£¬C£¬DÏ໥¶ÀÁ¢£¬ÇÒ${P}£¨{A}£©={P}£¨{B}£©=\frac{1}{2}$£¬${P}£¨C£©={P}£¨D£©=\frac{2}{3}$£®¼Çʼþ¡°±û¡¢¶¡Î´Ç©Ô¼¡±ÎªF£¬ÓÉʼþµÄ¶ÀÁ¢ÐԺͻ¥³âÐÔµÃÄÜÇó³ö±û¡¢¶¡Î´Ç©Ô¼µÄ¸ÅÂÊ£®
£¨II£© XµÄËùÓпÉÄÜȡֵΪ0£¬1£¬2£¬3£¬4£¬·Ö±ðÇó³öÏàÓ¦ÔڵĸÅÂÊ£¬ÓÉ´ËÄÜÇó³öXµÄ·Ö²¼ÁкÍXµÄÊýѧÆÚÍû£®

½â´ð ½â£º£¨I£©·Ö±ð¼Çʼþ¼×¡¢ÒÒ¡¢±û¡¢¶¡¿¼ÊԺϸñΪ A£¬B£¬C£¬D£®
ÓÉÌâÒâÖª A£¬B£¬C£¬DÏ໥¶ÀÁ¢£¬ÇÒ${P}£¨{A}£©={P}£¨{B}£©=\frac{1}{2}$£¬${P}£¨C£©={P}£¨D£©=\frac{2}{3}$£®
¼Çʼþ¡°±û¡¢¶¡Î´Ç©Ô¼¡±ÎªF£¬
ÓÉʼþµÄ¶ÀÁ¢ÐԺͻ¥³âÐԵãº
P£¨F£©=1-P£¨CD£©¡­£¨3·Ö£©
=$1-\frac{2}{3}¡Á\frac{2}{3}=\frac{5}{9}$¡­£¨4·Ö£©
£¨II£© XµÄËùÓпÉÄÜȡֵΪ0£¬1£¬2£¬3£¬4£®¡­£¨5·Ö£©
${P}£¨{{X}=0}£©={P}£¨{\overline{{A}{B}}}£©{P}£¨F£©=\frac{1}{2}¡Á\frac{1}{2}¡Á\frac{5}{9}=\frac{5}{36}$£¬
${P}£¨{{X}=1}£©={P}£¨{{A}\bar{B}}£©{P}£¨F£©+{P}£¨{\bar{A}{B}}£©{P}£¨F£©=2¡Á\frac{1}{2}¡Á\frac{1}{2}¡Á\frac{5}{9}=\frac{5}{18}$£¬
${P}£¨{{X}=2}£©={P}£¨{{A}{B}F}£©+{P}£¨{\bar{A}\bar{B}CD}£©=\frac{1}{2}¡Á\frac{1}{2}¡Á\frac{5}{9}+\frac{1}{2}¡Á\frac{1}{2}¡Á\frac{2}{3}¡Á\frac{2}{3}=\frac{1}{4}$£¬
${P}£¨{{X}=3}£©={P}£¨{{A}\bar{B}CD}£©+{P}£¨{\bar{A}{B}CD}£©=2¡Á\frac{1}{2}¡Á\frac{1}{2}¡Á\frac{2}{3}¡Á\frac{2}{3}=\frac{2}{9}$£¬
${P}£¨{{X}=4}£©={P}£¨{{A}{B}CD}£©=\frac{1}{2}¡Á\frac{1}{2}¡Á\frac{2}{3}¡Á\frac{2}{3}=\frac{1}{9}$£®
ËùÒÔ£¬XµÄ·Ö²¼ÁÐÊÇ£º

 X 0 1 2 3 4
 P $\frac{5}{36}$ $\frac{5}{18}$ $\frac{1}{4}$ $\frac{2}{9}$ $\frac{1}{9}$
¡­£¨12·Ö£©
XµÄÊýѧÆÚÍû${E}{X}=0¡Á\frac{5}{36}+1¡Á\frac{5}{18}+2¡Á\frac{1}{4}+3¡Á\frac{2}{9}+4¡Á\frac{1}{9}=\frac{17}{9}$¡­£¨13·Ö£©

µãÆÀ ±¾Ì⿼²é¸ÅÂʵÄÇ󷨣¬¿¼²éÀëÉ¢ÐÍËæ»ú±äÁ¿µÄ·Ö²¼ÁкÍÊýѧÆÚÍûµÄÇ󷨣¬ÊÇÖеµÌ⣬½âÌâʱҪÈÏÕæÉóÌ⣬עÒâ¶ÔÁ¢Ê¼þ¸ÅÂʼÆË㹫ʽµÄºÏÀíÔËÓã®

Á·Ï°²áϵÁдð°¸
Ïà¹ØÏ°Ìâ

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

4£®ÒÑÖª¼¯ºÏA={x|x2-2x-8£¼0}£¬B={x|x2+2x-3£¾0}£¬C={x|x2-3ax+2a2£¼0}
£¨¢ñ£©Ç󼯺ÏA£¬B£»
£¨¢ò£©ÈôC⊆£¨A¡ÉB£©£¬ÇóʵÊýaµÄȡֵ·¶Î§£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

5£®ÒÑ֪ȫ¼¯U=R£¬¼¯ºÏA={x|-1¡Üx¡Ü1}£¬B={x|x2-2x¡Ü0}£¬Ôò£¨∁UA£©¡È£¨∁UB£©=£¨¡¡¡¡£©
A£®{x|x£¼-1»òx£¾1}B£®{x|x£¼0»òx£¼2}C£®{x|x£¼0»òx£¾1}D£®{x|x£¼0»òx£¾2}

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ

2£®ÒÑÖªËæ»ú±äÁ¿X£¬YÂú×ãX+Y=8£¬ÇÒX¡«B£¨10£¬0.6£©£¬ÔòE£¨Y£©=2£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ

9£®Èç¹ûÕýʵÊýx£¬yÂú×ãxy+2x+y=4£¬Ôò3x+2yµÄ×îСֵΪ5£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

19£®ÉèËæ»ú±äÁ¿X·þ´ÓÕý̬·Ö²¼N£¨3£¬4£©£¬ÈôP£¨X£¾a2-4£©=P£¨X£¼6-3a£©£¬ÔòʵÊýaµÄֵΪ£¨¡¡¡¡£©
A£®-5»ò2B£®-1»ò4C£®-5»ò4D£®-5»ò-1»ò2»ò4

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

6£®Èçͼ£¬×µÌåP-ABCDÖУ¬ABCDΪ±ß³¤Îª1µÄÁâÐΣ¬ÇÒ¡ÏDAB=60¡ã£¬PA=PD=$\sqrt{2}$£¬PB=2£¬E¡¢F¡¢G·Ö±ðΪBC¡¢PC¡¢ADÖе㣮
£¨1£©ÇóÖ¤£ºÆ½ÃæPGB¡ÎÆ½ÃæDEF£»
£¨2£©Ö¤Ã÷£ºAD¡ÍÆ½ÃæPGB£»
£¨ÎÄ£©£¨3£©ÇóÖ±ÏßPCÓëÆ½ÃæPGBËù³É½ÇµÄÕýÏÒÖµ£»
£¨Àí£©£¨3£©Çó¶þÃæ½ÇP-AD-BµÄÓàÏÒÖµ£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ

3£®ÒÑÖªa=4${¡Ò}_{0}^{\frac{¦Ð}{2}}$cos£¨2x+$\frac{¦Ð}{6}$£©dx£¬Ôò¶þÏîʽ£¨x2+$\frac{a}{x}$£©5µÄÕ¹¿ªÊ½ÖÐx4µÄϵÊýΪ40£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

7£®¶ÔÓÚ¶¨ÒåÔÚRÉϵĺ¯Êýf£¨x£©Âú×ãÁ½¸öÌõ¼þ£º¢Ùµ±x¡Ê[0£¬1]ʱ£¬f£¨0£©=0£¬f£¨1£©=e£¬f£¨x£©-f¡ä£¨x£©£¼0£»¢Úex-1f£¨x+1£©=ex+1f£¨x-1£©£¬e1-xf£¨x+1£©=ex+1f£¨1-x£©£¬Èôº¯Êýy=f£¨x£©-$\frac{x{e}^{x}}{2016}$ÁãµãµÄ¸öÊýΪ£¨¡¡¡¡£©
A£®1008B£®2015C£®2016D£®2017

²é¿´´ð°¸ºÍ½âÎö>>

ͬ²½Á·Ï°²á´ð°¸