精英家教网 > 高中数学 > 题目详情
17.抛掷一枚均匀的硬币4次,正面不连续出现的概率是(  )
A.$\frac{3}{4}$B.$\frac{1}{2}$C.$\frac{1}{3}$D.$\frac{1}{4}$

分析 先求出基本事件总数n=24=16,再求出正面不连续出现包含的基本事件个数m=1+${C}_{4}^{1}+{C}_{3}^{2}$=8,由此能求出抛掷一枚均匀的硬币4次,正面不连续出现的概率.

解答 解:抛掷一枚均匀的硬币4次,
基本事件总数n=24=16,
正面不连续出现包含的基本事件个数m=1+${C}_{4}^{1}+{C}_{3}^{2}$=8,
∴抛掷一枚均匀的硬币4次,正面不连续出现的概率:
p=$\frac{m}{n}=\frac{8}{16}$=$\frac{1}{2}$.
故选:B.

点评 本题考查概率的求法,以及化简整理的运算能力,属于基础题,解题时要认真审题,注意等可能事件概率计算公式的合理运用.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

7.设集合A={4,5,7,9},B={3,4,7,8,9},全集U=A∪B,则集合∁U(A∩B)的非空子集共有(  )
A.3个B.4个C.7个D.8个

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.已知f(α)=cosα$\sqrt{\frac{1-sinα}{1+sinα}}$+sinα$\sqrt{\frac{1-cosα}{1+cosα}}$
(Ⅰ)当α为第二象限角时,化简f(α);
(Ⅱ)当α∈($\frac{π}{2}$,π)时,求f(α)的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

5.函数f(x)=sin(-2x)+cos2x的单调增区间为[$-\frac{3π}{8}$+kπ,-$\frac{π}{8}$+kπ](k∈Z).

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

12.已知函数f(x)=$\frac{{2}^{|x|+1}{+x}^{3}+2}{{2}^{|x|}+1}$的最大值为M,最小值为m,则M+m等于(  )
A.0B.2C.4D.8

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.已知函数f(x)=(2x+b)ex,F(x)=bx-lnx,b∈R.
(1)若b<0,且存在区间M,使f(x)和F(x)在区间M上具有相同的单调性,求b的取值范围;
(2)若F(x+1)>b对任意x∈(0,+∞)恒成立,求b的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

9.已知$sin(\frac{π}{2}-α)=\frac{1}{4}$,则cos2α的值是(  )
A.$\frac{7}{8}$B.$-\frac{7}{8}$C.$\frac{8}{9}$D.$-\frac{8}{9}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

6.已知i是虚数单位,则复数$\frac{2+i}{1-2i}$=(  )
A.-iB.$\frac{4}{5}-\frac{3}{5}$iC.iD.$\frac{4}{3}$-i

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

7.已知等差数列{an}的首项为a1,公差为d,其前n项和为Sn,若直线y=a1x+m与圆x2+(y-1)2=1的两个交点关于直线x+y-d=0对称,则数列($\frac{1}{{S}_{n}}$)的前100项的和为$\frac{200}{101}$.

查看答案和解析>>

同步练习册答案